Buch, Englisch, Band 6, 152 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 439 g
A Competent Genetic Algorithm for Solving Permutation and Scheduling Problems
Buch, Englisch, Band 6, 152 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 439 g
Reihe: Genetic Algorithms and Evolutionary Computation
ISBN: 978-0-7923-7460-2
Verlag: Springer US
OmeGA: A Competent Genetic Algorithm for Solving Permutation and Scheduling Problems addresses two increasingly important areas in GA implementation and practice. OmeGA, or the ordering messy genetic algorithm, combines some of the latest in competent GA technology to solve scheduling and other permutation problems. Competent GAs are those designed for principled solutions of hard problems, quickly, reliably, and accurately. Permutation and scheduling problems are difficult combinatorial optimization problems with commercial import across a variety of industries.
This book approaches both subjects systematically and clearly. The first part of the book presents the clearest description of messy GAs written to date along with an innovative adaptation of the method to ordering problems. The second part of the book investigates the algorithm on boundedly difficult test functions, showing principled scale up as problems become harder and longer. Finally, the book applies the algorithm to a test function drawn from the literature of scheduling.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik Robotik
- Mathematik | Informatik EDV | Informatik Informatik Logik, formale Sprachen, Automaten
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Wissensbasierte Systeme, Expertensysteme
- Mathematik | Informatik Mathematik Operations Research Spieltheorie
Weitere Infos & Material
1. Development of the Omega.- 1.1 The Mechanics of the Fast Messy GA.- 1.2 Using Random Keys for Representation.- 1.3 Designing the OmeGA.- 1.4 Ordering Deceptive Problems.- 1.5 Problem Codings.- 1.6 Experiments.- 1.7 Summary.- 2. Performance Analysis of the Omega.- 2.1 Scale-up Analysis.- 2.2 New Ordering Deceptive Problems.- 2.3 Tests with Uniform and Nonuniform Scaling.- 2.4 Test with Nonuniform Building-Block Size.- 2.5 Tests with Overlapping Building Blocks.- 2.6 Summary.- 3. Application to a Scheduling Problem.- 3.1 Introduction to Scheduling Problems.- 3.2 Problem Formulation.- 3.3 Schedule Representation and Decoding.- 3.4 Experiments.- 3.5 Summary.- 4. Conclusions and Future Work.- Appendices.- Appendix A: The Benchmark Input Data.- Appendix B: Best Schedules.- Appendix C: Source Code of OmeGA.- References.