Kumar | Fundamentals of Cost-Efficient AI | Buch | 978-0-443-33362-0 | www.sack.de

Buch, Englisch, 434 Seiten, Format (B × H): 191 mm x 235 mm, Gewicht: 450 g

Kumar

Fundamentals of Cost-Efficient AI

In Healthcare and Biomedicine
Erscheinungsjahr 2025
ISBN: 978-0-443-33362-0
Verlag: Elsevier Science

In Healthcare and Biomedicine

Buch, Englisch, 434 Seiten, Format (B × H): 191 mm x 235 mm, Gewicht: 450 g

ISBN: 978-0-443-33362-0
Verlag: Elsevier Science


Fundamentals of Cost-Efficient AI: In Healthcare and Biomedicine provides a comprehensive yet accessible introduction to the principles of designing, training, and deploying efficient artificial intelligence systems. It explains the theory behind cost-aware machine learning and data mining and examines methods across deep learning, graph neural networks (GNNs), transformer architectures, diffusion models, reinforcement learning, and knowledge distillation.
The book covers fine-tuning and compression techniques such as low-rank adaptation (LoRA), parameter-efficient fine-tuning (PEFT), adapter-based tuning, pruning, and quantization. It also explores inference acceleration through Flash Attention, prefill optimization, and speculative decoding, and explains how mixture-of-experts (MoE) architectures can scale models efficiently across GPUs and edge devices.
To build a strong conceptual understanding, the text introduces fundamentals of GPU architecture, matrix multiplication, memory hierarchies, and parallelization strategies, helping readers develop an intuition for optimizing training and inference pipelines.
While applicable across domains, the book places special emphasis on healthcare and biomedicine, where efficient AI can reduce costs and improve diagnostics, precision medicine, and clinical decision support. Real-world case studies and interviews with experts from organizations such as Google and Microsoft provide practical insights into building scalable healthcare AI systems. Aimed at graduate students, researchers, clinicians, biomedical engineers, data scientists, and AI practitioners, this book bridges algorithmic principles with applied implementation.

Kumar Fundamentals of Cost-Efficient AI jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


- Introduction
- Efficient transformer architectures
- Efficient model fine-tuning
- Model compression techniques
- Efficient reinforcement learning
- Efficient graph algorithms
- Training data augmentation
- Training data generation
- Cost efficient mixture of experts
- GPU fundamentals and model inference
- Fast matrix multiplication algorithms
- Running models locally
- Expert interviews and use cases


Kumar, Rohit
Rohit Kumar studied at Stanford, IIT Delhi, and RPI, specializing in machine learning. He is the Global Head of AI & Analytics at HCLTech (Digital Business), a visiting faculty at Shiv Nadar University, and a PhD scholar at IIT researching AI hallucinations. With over 20 years of product development experience in Silicon Valley, he has served as the Head of R&D at the Ministry of IT (Government of India), Senior Director at WalmartLabs, and CEO of a blockchain startup. He holds multiple patents and publications on generative AI, data mining, and large-scale distributed systems.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.