Kumar Mishra | Nature-Inspired Algorithms | Buch | 978-1-032-32264-3 | www.sack.de

Buch, Englisch, 326 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 500 g

Kumar Mishra

Nature-Inspired Algorithms

For Engineers and Scientists
1. Auflage 2024
ISBN: 978-1-032-32264-3
Verlag: CRC Press

For Engineers and Scientists

Buch, Englisch, 326 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 500 g

ISBN: 978-1-032-32264-3
Verlag: CRC Press


This comprehensive reference text discusses nature inspired algorithms and their applications. It presents the methodology to write new algorithms with the help of MATLAB programs and instructions for better understanding of concepts. It covers well-known algorithms including evolutionary algorithms, genetic algorithm, particle Swarm optimization and differential evolution, and recent approached including gray wolf optimization. A separate chapter discusses test case generation using techniques such as particle swarm optimization, genetic algorithm, and differential evolution algorithm.

The book-

- Discusses in detail various nature inspired algorithms and their applications

- Provides MATLAB programs for the corresponding algorithm

- Presents methodology to write new algorithms

- Examines well-known algorithms like the genetic algorithm, particle swarm optimization and differential evolution, and recent approaches like gray wolf optimization.

- Provides conceptual linking of algorithms with theoretical concepts

The text will be useful for graduate students in the field of electrical engineering, electronics engineering, computer science and engineering.

Discussing nature inspired algorithms and their applications in a single volume, this text will be useful as a reference text for graduate students in the field of electrical engineering, electronics engineering, computer science and engineering. It discusses important algorithms including deterministic algorithms, randomized algorithms, evolutionary algorithms, particle swarm optimization, big bang big crunch (BB-BC) algorithm, genetic algorithm and grey wolf optimization algorithm. "

Kumar Mishra Nature-Inspired Algorithms jetzt bestellen!

Zielgruppe


Academic, Postgraduate, and Undergraduate Advanced


Autoren/Hrsg.


Weitere Infos & Material


Preface. Acknowledgments. About the Author. Introduction. Binary Genetic Algorithms. Real-Parameter Genetic Algorithm. Differential Evolution. Particle Swarm Optimization. Grey Wolf Optimization. Environmental Adaptation Method. Other Important Optimization Algorithms. Application of Genetic Algorithms, Partial Swarm Optimization, and Differential Evolution in Software Testing. Application of Genetic Algorithms, Partial Swarm Optimization, and Differential Evolution in Regression Testing. Application of Genetic Algorithms and Partial Swarm Optimization in Cloud Computing. References and Further Reading. Index.


K. K. Mishra is presently working as an assistant professor, department of computer science and engineering, Motilal Nehru National Institute of Technology Allahabad, India. His research areas include genetic algorithm, analysis of algorithm, automata theory, microprocessor and multi-objective optimization. He has taught courses including computer architecture, data structures, advanced computer architecture, programming in C++, microprocessor and automata theory at undergraduate and graduate level. He is a regular reviewer of the Journal of Supercomputing (Springer), Applied Intelligence, Applied Soft Computing, IEEE Transaction on Cybernetics, IEEE System Journal, Neural computing and application, and IETE journals.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.