Buch, Englisch, 437 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 680 g
Buch, Englisch, 437 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 680 g
Reihe: Graduate Texts in Mathematics
ISBN: 978-3-030-80106-9
Verlag: Springer
This text focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical tools needed for a more advanced course on Riemannian manifolds. It covers proving the four most fundamental theorems relating curvature and topology: the Gauss-Bonnet Theorem, the Cartan-Hadamard Theorem, Bonnet’s Theorem, and a special case of the Cartan-Ambrose-Hicks Theorem.
Zielgruppe
Graduate
Autoren/Hrsg.
Weitere Infos & Material
Preface.- 1. What Is Curvature?.- 2. Riemannian Metrics.- 3. Model Riemannian Manifolds.- 4. Connections.- 5. The Levi-Cevita Connection.- 6. Geodesics and Distance.- 7. Curvature.- 8. Riemannian Submanifolds.- 9. The Gauss–Bonnet Theorem.- 10. Jacobi Fields.- 11. Comparison Theory.- 12. Curvature and Topology.- Appendix A: Review of Smooth Manifolds.- Appendix B: Review of Tensors.- Appendix C: Review of Lie Groups.- References.- Notation Index.- Subject Index.




