Lin | Köthe-Bochner Function Spaces | Buch | 978-1-4612-6482-8 | sack.de

Buch, Englisch, 370 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 587 g

Lin

Köthe-Bochner Function Spaces


Softcover Nachdruck of the original 1. Auflage 2004
ISBN: 978-1-4612-6482-8
Verlag: Birkhäuser Boston

Buch, Englisch, 370 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 587 g

ISBN: 978-1-4612-6482-8
Verlag: Birkhäuser Boston


This monograph is devoted to the study of Köthe–Bochner function spaces, an active area of research at the intersection of Banach space theory, harmonic analysis, probability, and operator theory. A number of significant results---many scattered throughout the literature---are distilled and presented here, giving readers a comprehensive view of the subject from its origins in functional analysis to its connections to other disciplines. Considerable background material is provided, and the theory of Köthe–Bochner spaces is rigorously developed, with a particular focus on open problems.  Extensive historical information, references, and questions for further study are included; instructive examples and many exercises are incorporated throughout. Both expansive and precise, this book’s unique approach and systematic organization will appeal to advanced graduate students and researchers in functional analysis, probability, operator theory, and related fields.

Lin Köthe-Bochner Function Spaces jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1 Classical Theorems.- 1.1 Preliminaries.- 1.2 Basic Sequences.- 1.3 Banach Spaces Containing l1 or c0.- 1.4 James’s Theorem.- 1.5 Continuous Function Spaces.- 1.6 The Dunford-Pettis Property.- 1.7 The Pe?czynski Property (V*).- 1.8 Tensor Products of Banach Spaces.- 1.9 Conditional Expectation and Martingales.- 1.10 Notes and Remarks.- 1.11 References.- 2 Convexity and Smoothness.- 2.1 Strict Convexity and Uniform Convexity.- 2.2 Smoothness.- 2.3 Banach-Saks Property.- 2.4 Notes and Remarks.- 2.5 References.- 3 Köthe-Bochner Function Spaces.- 3.1 Köthe Function Spaces.- 3.2 Strongly and Scalarly Measurable Functions.- 3.3 Vector Measure.- 3.4 Some Basic Results.- 3.5 Dunford-Pettis Operators.- 3.6 The Radon-Nikodým Property.- 3.7 Notes and Remarks.- 3.8 References.- 4 Stability Properties I.- 4.1 Extreme Points and Smooth Points.- 4.2 Strongly Extreme and Denting Points.- 4.3 Strongly and w*-Strongly Exposed Points.- 4.4 Notes and Remarks.- 4.5 References.- 5 Stability Properties II.- 5.1 Copies of c0 in E(X).- 5.2 The Díaz-Kalton Theorem.- 5.3 Talagrand’s L1(X)-Theorem.- 5.4 Property (V*).- 5.5 The Talagrand Spaces.- 5.6 The Banach-Saks Property.- 5.7 Notes and Remarks.- 5.8 References.- 6 Continuous Function Spaces.- 6.1 Vector-Valued Continuous Functions.- 6.2 The Dieudonné Property in C(K, X).- 6.3 The Hereditary Dunford-Pettis Property.- 6.4 Projective Tensor Products.- 6.5 Notes and Remarks.- 6.6 References.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.