Lin / Lee | Cloud and Network Computing | Buch | 978-981-950128-1 | www.sack.de

Buch, Englisch, 436 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 680 g

Reihe: Communications in Computer and Information Science

Lin / Lee

Cloud and Network Computing

Second International Conference, ICCNC 2025, Fuzhou, China, June 20-22, 2025, Proceedings
Erscheinungsjahr 2025
ISBN: 978-981-950128-1
Verlag: Springer

Second International Conference, ICCNC 2025, Fuzhou, China, June 20-22, 2025, Proceedings

Buch, Englisch, 436 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 680 g

Reihe: Communications in Computer and Information Science

ISBN: 978-981-950128-1
Verlag: Springer


This book constitutes the proceedings of the Second International Conference on Cloud and Network Computing, ICCNC 2025, which was held in Fuzhou, China, during June 20–22, 2025.

The 31 full papers presented in this volume were carefully reviewed and selected from 88 submissions. 

They are grouped into the following topics: Cloud & Edge Computing; Network Computing; Big Data Analysis and Artificial Intelligence; Security & Privacy.

Lin / Lee Cloud and Network Computing jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


.- Cloud & Edge Computing.

.- FPGA-Based Real-Time FIR Filter for Digital Audio Processing.

.- SCDFL:A Secure and Byzantine-Resilient Decentralized Federated Learning Framework.

.- Multicast Communication in All-Optical Fat-Tree Networks.

.- A Multi-Omics Cancer Subtype Clustering Method Based on Convolutional Autoencoder and Prototype Alignment.

.- Contract-Theory-Based Incentive Mechanism for Social Welfare Maximization in Streaming Content Caching Systems.

.- Multimodal Data Fusion for Intelligent Assessment and Dynamic Forecasting in Agricultural Logistics Systems.

.- The Optimization Problem of Delivery Platforms.

.- Network Computing.

.- Fault Tolerance Analysis of Half Hypercube Networks Under the 1-Extra R-Component Pattern.

.- Efficient Cross-Layer Coordinated Buffer Management in Datacenter Networks.

.- Reliability Analysis of Folded Hypercube-Like Networks.

.- Hybrid Gravity-Based Centrality Scheme for High-Resolution Influencer Detection in Complex Networks.

.- The Approximate Concept of Variable Precision Rough Set on Concept Lattice.

.- LLM-RLFuzz: An intelligent Fuzzing Framework for IoT Protocol.

.- Three-Round Adaptive Local Diagnosis for Digraph Under MM Model.

.- PSO-Optimized Anchor Weighting for NLOS-Resilient UWB Localization in Multipath Indoor Environment.

.- Big Data Analysis and Artificial Intelligence.

.- Contrastive Learning for Fault Diagnosis Enhanced by System-Level Graph Representation.

.- High-Dimensional Time Series Anomaly Detection Method Based on Multimodal Hypergraph Generative Adversarial Networks.

.- Adaptive Genetic K-Means Clustering With Principal Component Analysis and Neural Network-Driven Elite Selection.

.- Concept-Aware Deep Representation Learning for Co-Evolving Sequences.

.- Normalized Cut and Subgraph-Aware Multi-Head Attention Based Node-Level Anomaly Detection.

.- Graph Anomaly Detection Based on Dynamic Hypergraph Neural Network.

.- AMSVGAE-Based Causal Inference for Interpretable Graph Neural Networks.

.- Distributed Resource Management Mechanism Based on Deep Reinforcement Learning.

.- Security & Privacy.

.- An Adversarial Attack Method Based on Local Masking and Multi-Stage Momentum Optimization.

.- Anomaly Detection Method of Source Code Vulnerability Detection Tools Based on Differential Testing.

.- The Fractional Features of Separated Fuzzy Sets and Its Intelligent Acquisition.

.- NLP-Based Detecting Privacy Policy and Behavior Inconsistencies in Android Apps.

.- DOL: A Dual Ownership License for Deep Neural Networks.

.- Android App Privacy Risk Assessment: Combining Policy Analysis and Behavioral Monitoring.

.- Improvement of Provable Data Possession Scheme.

.- Privacy-Preserving Scheme in Social Networks With Differential Privacy.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.