Buch, Englisch, 105 Seiten, Previously published in hardcover, Format (B × H): 156 mm x 233 mm, Gewicht: 185 g
Reihe: Springer Theses
Buch, Englisch, 105 Seiten, Previously published in hardcover, Format (B × H): 156 mm x 233 mm, Gewicht: 185 g
Reihe: Springer Theses
ISBN: 978-981-10-9861-1
Verlag: Springer Nature Singapore
Given the unique experimental procedures and methods, the systematic electrochemical analysis, and the creative flexible energy storage device design presented, the thesis offers a valuable reference guide for researchers and newcomers to the field of carbon-based electrochemical energy storage.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Materialwissenschaft: Verbundwerkstoffe
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Materialwissenschaft: Biomaterialien, Nanomaterialien, Kohlenstoff
- Technische Wissenschaften Energietechnik | Elektrotechnik Energieumwandlung, Energiespeicherung
Weitere Infos & Material
Chapter 1
Introduction and Literature Background
1.1 Energy demands and challenges
1.2 Electrochemical Energy Storage Systems
1.2.1 Electrochemical Capacitors (ECs)
1.2.2 Lithium-ion Battery
1.2.3 Electrochemical Capacitor vs. Battery
1.3 Introduction to Graphene
1.3.1 Various Approaches Leading to Graphene Oxide/Graphene
1.3.2 Graphene for Soft Energy Storage Devices
References
Chapter 2
Electrochemical Exfoliation Synthesis of Graphene
2.1 Introduction
2.2 Experiment and Characterization
2.2.1 Material synthesis
2.2.2 Material Characterization
2.3 Results and Discussions
2.3.1 The Synthesis of Graphene Flakes
2.3.2 The Mechanism for Electrochemical Exfoliation
2.3.3 Electrochemical Performance of Resulted Graphene Flakes
2.4 Conclusion
References
Chapter 3
High-Performance Graphene Foam/Fe3O4 Hybrid Electrode for Lithium Ion Battery
3.1 Introduction
3.2 Experiment and Characterization
3.2.1 Materials Synthesis
3.2.2 Material Characterization
3.3 Results and Discussions
3.3.1 The Synthesis of GF/Fe3O4 Hybrid Films
3.3.2 Electrochemical Performance of GF/Fe3O4
3.3.3 Underlying mechanism for the enhanced electrochemical performance
3.4 Conclusion
References
Chapter 4
Graphene Foam (GF)/Carbon Nanotubes (CNTs) Hybrid Film-based High-Performance Flexible Asymmetric Supercapacitors
4.1 Introduction
4.2 Experiment
4.2.1 Material Synthesis and Device Fabrication
4.2.2 Material Characterization
4.3 Results and Discussions
4.3.1 Fabrication of GF/CNTs Hybrid Films
4.3.2 Fabrication of GF/CNTs/MnO2 and GF/CNTs/Ppy Hybrid Films
4.3.3 Electrochemical Performance of GF/CNTs/MnO2 and GF/CNTs/Ppy Hybrid Electrodes
4.3.4 Electrochemical Performance of GF/CNTs/MnO2 // GF/CNTs/Ppy ASCs
4.3.5 Underlying Mechanism for Enhanced Electrochemical Performance
4.4 Conclusion
References
Chapter 5
Graphene Foam/Carbon Nanotubes Hybrid Film based Flexible Alkaline Rechargeable Ni/Fe Battery
5.1 Introduction
5.2 Experiment
5.2.1 Materials Synthesis
5.2.2 Materials Characterization
5.3 Results and Discussions
5.3.1 The Synthesis of GF/CNTs/Ni(OH)2 and GF/CNTs/Fe2O3
5.3.2 Electrochemical Performance of GF/CNTs/Ni(OH)2 and GF/CNTs/Fe2O3
5.3.3 Electrochemical Performance of f-Ni/Fe Battery
5.3.4 Underlying Mechanism for Enhanced Electrochemical Performance
5.4 Conclusion
References
Chapter 6
Conclusions, Comments and Future Work
6.1 Conclusions
6.2 Comments and Future Work
References




