Lorenz | Reinforcement Learning From Scratch | Buch | 978-3-031-09029-5 | www.sack.de

Buch, Englisch, 184 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 471 g

Lorenz

Reinforcement Learning From Scratch

Understanding Current Approaches - with Examples in Java and Greenfoot
1. Auflage 2022
ISBN: 978-3-031-09029-5
Verlag: Springer

Understanding Current Approaches - with Examples in Java and Greenfoot

Buch, Englisch, 184 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 471 g

ISBN: 978-3-031-09029-5
Verlag: Springer


In ancient games such as chess or go, the most brilliant players can improve by studying the strategies produced by a machine. Robotic systems practice their own movements. In arcade games, agents capable of learning reach superhuman levels within a few hours. How do these spectacular reinforcement learning algorithms work? 

With easy-to-understand explanations and clear examples in Java and Greenfoot, you can acquire the principles of reinforcement learning and apply them in your own intelligent agents. Greenfoot (M.Kölling, King's College London) and the hamster model (D. Bohles, University of Oldenburg) are simple but also powerful didactic tools that were developed to convey basic programming concepts. 

The result is an accessible introduction into machine learning that  concentrates on reinforcement learning. Taking the reader through the steps of developing intelligent agents, from the very basics to advanced aspects, touching on a variety of machine learning algorithms along the way, one is allowed to play along, experiment, and add their own ideas and experiments.
Lorenz Reinforcement Learning From Scratch jetzt bestellen!

Zielgruppe


Upper undergraduate


Autoren/Hrsg.


Weitere Infos & Material


Foreword of Michael Koelling (King’s College London)

Preface

Introduction

Chapter 1: Reinforcement learning as subfield of machine learning

1.1 Machine Learning as automated processing of feedback from the environment

1.2 Machine Learning methods

1.3 Reinforcement Learning with Java

Bibliography

Chapter 2: Basic concepts of reinforcement learning

2.1 Agents

2.2 Control of the agent

2.3 Evaluation of states and actions (Q-function, Bellman equation)

Bibliography

Chapter 3: Optimal decision-making in a known environment

3.1 Value Iteration

3.1.1 Target-oriented state evaluation (“backward induction”)

3.1.2 Policy-based state valuation (reward prediction)

3.2 Iterative policy search

3.2.1 Direct policy improvement

3.2.2 Mutual improvement of policy and value-function

3.3 Optimal policy in a board game scenario

3.4 Summary

Bibliography

Chapter 4: decision making and learning in an unknown environment

4.1 Exploration vs. exploitation

4.2 Retroactive processing of experience ("model-free reinforcement learning")

4.2.1 Goal-oriented learning ("value-based")

4.2.2 Policy search

4.2.3 Combined methods (Actor-Critic)

4.3 Exploration with predictive simulations ("Model-Based Reinforcement Learning")

4.3.1 Dyna-Q

4.3.2 Monte-Carlo rollout

4.3.3 Artificial curiosity

4.3.4 Monte Carlo Tree Search (MCTS).

4.3.5 Remarks on the Concept of Intelligence

4.4 Systematic of learning methods

Bibliography

Chapter 5: Artificial Neural Networks as estimators for state values and the action selection

5.1 Artificial neural networks

5.1.1     Pattern recognition with the perceptron

5.1.2     The adaptability of artificial neural networks

5.1.3     Backpropagation Learning

5.1.4     Regression with multilayer perceptrons

5.2 State evaluation with generalizing approximations

5.3         Neural estimators for action selection

5.3.1     Policy gradient with neural networks

5.3.2     Proximal Policy Optimization

5.3.3     Evolutionary strategy with a neural policy

Bibliography

Chapter 6: Guiding ideas in Artificial Intelligence over time

6.1 Changing basic ideas

6.2 On the relationship between humans and Artificial Intelligence

Bibliography


After studying computer science and philosophy with a focus on artificial intelligence and machine learning at the Humboldt University Berlin and for a few years as a project engineer, Uwe Lorenz currently works as a high school teacher for computer science and mathematics and at the Free University of Berlin in the Computing Education Research Group, - since his first contact with computers at the end of the 1980s he couldn't let go of the topic of artificial intelligence.




Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.