Lumban Gaol / Matsuo / Ito | Advances in Smart Knowledge Computing | Buch | 978-3-032-01132-9 | www.sack.de

Buch, Englisch, 464 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 953 g

Reihe: Studies in Computational Intelligence

Lumban Gaol / Matsuo / Ito

Advances in Smart Knowledge Computing

Towards Post Artificial Intelligence Era
Erscheinungsjahr 2025
ISBN: 978-3-032-01132-9
Verlag: Springer

Towards Post Artificial Intelligence Era

Buch, Englisch, 464 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 953 g

Reihe: Studies in Computational Intelligence

ISBN: 978-3-032-01132-9
Verlag: Springer


This book explores the evolution of computing beyond current AI paradigms, with a particular emphasis on the potential of knowledge to be used to develop more intelligent, adaptive, and potentially conscious systems. This book has three elements:

First, moving beyond "Narrow AI" and data-centric paradigms were investigated.The book likely discusses the inherent limitations of current "narrow AI", despite impressive performance in specific tasks, interpretability, reasoning capabilities, and true understanding.

Second, the modelling and uses cases were explored. The book would explore advanced methods for representing knowledge and performing logical or probabilistic reasoning over that knowledge.

Third, provide the applications and impact of post-AI. The book provides with details of smart knowledge computing which can lead to more informed, explainable, and robust decision-making in complex real-world scenarios.

In essence, this presents itself as a forward-looking investigation into how intelligence might be constructed by combining the capacity of data processing with explicit knowledge representation and advanced reasoning.

Lumban Gaol / Matsuo / Ito Advances in Smart Knowledge Computing jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Exploring the Data Balance Effect: Artificial Neural Network Classification on Rodent Tuber’s Liquid Chromatography Mass Spectrometry Data.- Explainable Edge AI for Transparent and Accessible Telemedicine Diagnostics .- Insights and Recommendations for Earthquake 
Logistics in Indonesia: Analyzing Twitter (X) Data.- Machine Learning Models for Early Prediction of Student Success and Dropout in Higher Education.- Predicting Stock Price Movements Using the RNN-MGU Model.- etc..



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.