Buch, Englisch, 398 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 984 g
Buch, Englisch, 398 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 984 g
ISBN: 978-1-4987-3701-2
Verlag: Taylor & Francis Inc
Carbon moves through the atmosphere, through the oceans, onto land, and into ecosystems. This cycling has a large effect on climate – changing geographic patterns of rainfall and the frequency of extreme weather – and is altered as the use of fossil fuels adds carbon to the cycle. The dynamics of this global carbon cycling are largely predicted over broad spatial scales and long periods of time by Earth system models. This book addresses the crucial question of how to assess, evaluate, and estimate the potential impact of the additional carbon to the land carbon cycle. The contributors describe a set of new approaches to land carbon cycle modeling for better exploring ecological questions regarding changes in carbon cycling; employing data assimilation techniques for model improvement; and doing real- or near-time ecological forecasting for decision support. This book strives to balance theoretical considerations, technical details, and applications of ecosystem modeling for research, assessment, and crucial decision making.
Key Features
- Helps readers understand, implement, and criticize land carbon cycle models
- Offers a new theoretical framework to understand transient dynamics of land carbon cycle
- Describes a suite of modeling skills – matrix approach to represent land carbon, nitrogen, and phosphorus cycles; data assimilation and machine learning to improve parameterization; and workflow systems to facilitate ecological forecasting
- Introduces a new set of techniques, such as semi-analytic spin-up (SASU), unified diagnostic system with a 1-3-5 scheme, traceability analysis, and benchmark analysis, for model evaluation and improvement
Related Titles
Isabel Ferrera, ed. Climate Change and the Oceanic Carbon Cycle: Variables and Consequences
(ISBN 978-1-774-63669-5)
Lal, R. et al., eds. Soil Processes and the Carbon Cycle (ISBN 978-0-8493-7441-8)
Windham-Myers, L., et al., eds. A Blue Carbon Primer: The State of Coastal Wetland Carbon
Science, Practice and Policy (ISBN 978-0-367-89352-1)
Zielgruppe
Academic, Professional, and Professional Reference
Autoren/Hrsg.
Fachgebiete
- Geowissenschaften Umweltwissenschaften Umwelttechnik
- Naturwissenschaften Biowissenschaften Biowissenschaften Ökologie
- Geowissenschaften Umweltwissenschaften Umweltwissenschaften
- Geowissenschaften Geographie | Raumplanung Geographie: Sachbuch, Reise
- Technische Wissenschaften Umwelttechnik | Umwelttechnologie Umwelttechnik
- Naturwissenschaften Biowissenschaften Biowissenschaften Biowissenschaften, Biologie: Sachbuch, Naturführer
Weitere Infos & Material
Unit 1: Fundamentals of carbon cycle modeling. Chapter 1: Theoretical foundation of the land carbon cycle and matrix approach. Yiqi Luo. Chapter 2: Introduction to modeling. Benjamin Smith. Chapter 3: Flow diagrams and balance equations of land carbon models. Yuanyuan Huang. Chapter 4: Practice 1, Developing carbon flow diagrams and balance equations. Yuanyuan Huang. Unit 2: Matrix representation of carbon balance. Chapter 5: Developing matrix representation of land carbon models. Yuanyuan Huang. Chapter 6: Coupled carbon-nitrogen matrix models. Zheng Shi and Xingjie Lu. Chapter 7: Compartmental systems. Carlos Sierra. Chapter 8: Practice 2, Matrix representation of carbon balance equations and coding. Yuanyuan Huang. Unit 3: Carbon cycle diagnostics for uncertainty analysis. Chapter 9: Unified diagnostic system for uncertainty analysis. Yiqi Luo. Chapter 10: Sensitivity analysis with matrix equations: A case study with ORCHIDEE. Yuanyuan Huang. Chapter 11: Matrix phosphorus model and data assimilation. Enqing Hou. Chapter 12: Practice 3, Diagnostic variables in matrix models. Xingjie Lu. Unit 4: Semi-analytic spin-up (SASU). Chapter 13: Non-autonomous ODE system solver and stability analysis. Ying Wang. Chapter 14: Semi-Analytic Spin-Up (SASU) of coupled carbon-nitrogen cycle models. Xingjie Lu and Jianyang Xia. Chapter 15: Time characteristics of compartmental systems. Carlos Sierra. Chapter 16: Practice 4, Efficiency and convergence of semi-analytic spin-up (SASU) in TECO. Xingjie Lu. Unit 5: Traceability and benchmark analysis. Chapter 17: Overview of traceability analysis. Jianyang Xia. Chapter 18: Applications of the transient traceability framework. Lifen Jiang. Chapter 19: Benchmark analysis. Yiqi Luo & Forrest M. Hoffman. Chapter 20: Practice 5, Traceability analysis for evaluating terrestrial carbon cycle models. Jianyang Xia & Jian Zhou. Unit 6: Introduction to data assimilation. Chapter 21: Data assimilation: Introduction, procedure, and applications. Yiqi Luo. Chapter 22: Bayesian statistics and Markov chain Monte Carlo method in data assimilation. Feng Tao. Chapter 23: Application of data assimilation to soil incubation data. Junyi Liang & Jiang Jiang. Chapter 24: Practice 6, The seven-step procedure for data assimilation. Xin Huang. Unit 7: Data assimilation with field measurements and satellite data. Chapter 25: Model-data integration at the SPRUCE experiment. Daniel Ricciuto. Chapter 26: Application of data assimilation to a peatland methane study. Shuang Ma. Chapter 27: Global data assimilation using earth observation – the CARDAMOM approach. Mathew Williams. Chapter 28: Practice 7, Data assimilation at the SPRUCE site. Shuang Ma. Unit 8: Value of data to constrain models and their predictions. Chapter 29: Information contents of different types of data sets to constrain parameters and predictions. Enqing Hou. Chapter 30: Using data assimilation to identify mechanisms controlling lake carbon dynamics. Oleksandra (Sasha) Hararuk. Chapter 31: Data-constrained uncertainty analysis in global soil carbon models. Zheng Shi. Chapter 32: Practice 8, Information contents of land carbon pool and flux measurements to constrain a land carbon model. Enqing Hou. Unit 9: Ecological forecasting with EcoPAD. Chapter 33: Introduction to ecological forecasting. Yiqi Luo. Chapter 34: Ecological Platform for Assimilating Data (EcoPAD) for ecological forecasting. Yuanyuan Huang. Chapter 35: Practice 9, Ecological forecasting at the SPRUCE site. Jiang Jiang. Unit 10: Process-based machine learning and data-driven modeling (PRODA). Chapter 36: Introduction to machine learning and neural networks. Toby Dylan Hocking. Chapter 37: PROcess-guided deep learning and DAta-driven modeling (PRODA). Feng Tao & Yiqi Luo. Chapter 38: Practice 10, Deep learning to optimize parametrization of CLM5. Feng Tao. Appendices. Appendix 1: Matrix algebra in land carbon cycle modeling. Ye Chen. Appendix 2: Introduction to programming in Python. Xin Huang. Appendix 3: CarboTrain user guide. Yuan Gao