Buch, Englisch, 864 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1293 g
Buch, Englisch, 864 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1293 g
Reihe: Foundations of Engineering Mechanics
ISBN: 978-3-642-53650-2
Verlag: Springer
This is a translation of A.I. Lurie’s classical Russian textbook on analytical mechanics. It offers a consummate exposition of the subject of analytical mechanics through a deep analysis of its most fundamental concepts. The book has served as a desk text for at least two generations of researchers working in those fields where the Soviet Union accomplished the greatest technological breakthrough of the 20th century - a race into space. Those and other related fields continue to be intensively explored since then, and the book clearly demonstrates how the fundamental concepts of mechanics work in the context of up-to-date engineering problems.
Zielgruppe
Research
Fachgebiete
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Strömungslehre
- Naturwissenschaften Physik Mechanik Kontinuumsmechanik, Strömungslehre
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Maschinenbau
- Naturwissenschaften Physik Mechanik Klassische Mechanik, Newtonsche Mechanik
- Technische Wissenschaften Technik Allgemein Mathematik für Ingenieure
Weitere Infos & Material
1 Basic definitions.- 2 Rigid body kinematics — basic knowledge.- 3 Theory of finite rotations of rigid bodies.- 4 Basic dynamic quantities.- 5 Work and potential energy.- 6 The fundamental equation of dynamics. Analytical statics.- 7 Lagrange’s differential equations.- 8 Other forms of differential equations of motion.- 9 Dynamics of relative motion.- 10 Canonical equations and Jacobi’s theorem.- 11 Perturbation theory.- 12 Variational principles in mechanics.- A Elements of the theory of matrices.- A.1 Definitions.- A.2 Operations on matrices.- A.3 Inverse of the matrix.- A.4 Matrix representation of the operations of vector calculus.- A.5 Differentiation of a matrix.- B Basics of tensor calculus.- B.1 General non-orthogonal coordinates.- B.2 Vectors using the non-orthogonal coordinates.- B.3 Tensors of second rank in the non-orthogonal coordinates.- B.4 Curvilinear coordinates.- B.5 Covariant differentiation.- B.6 Examples of non-orthogonal curvilinear coordinates.- B.7 Formulae ofthe theory of surfaces.- B.8 Curvature of lines on the surface.- B.9 Covariant derivative of a vector on the surface.- B.10 Orthogonal curvilinear coordinates.- B.11 Finite-dimensional Euclidean space.- B.14 The Riemann-Christoffel tensor.- References.




