Manturov | Knot Theory | Buch | 978-1-138-56124-3 | www.sack.de

Buch, Englisch, 580 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 1030 g

Manturov

Knot Theory

Second Edition
2. Auflage 2018
ISBN: 978-1-138-56124-3
Verlag: CRC Press

Second Edition

Buch, Englisch, 580 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 1030 g

ISBN: 978-1-138-56124-3
Verlag: CRC Press


Over the last fifteen years, the face of knot theory has changed due to various new theories and invariants coming from physics, topology, combinatorics and alge-bra. It suffices to mention the great progress in knot homology theory (Khovanov homology and Ozsvath-Szabo Heegaard-Floer homology), the A-polynomial which give rise to strong invariants of knots and 3-manifolds, in particular, many new unknot detectors. New to this Edition is a discussion of Heegaard-Floer homology theory and A-polynomial of classical links, as well as updates throughout the text.

Knot Theory, Second Edition is notable not only for its expert presentation of knot theory’s state of the art but also for its accessibility. It is valuable as a profes-sional reference and will serve equally well as a text for a course on knot theory.

Manturov Knot Theory jetzt bestellen!

Weitere Infos & Material


Knots, links, and invariant polynomials. Introduction. Reidemeister moves. Knot arithmetics. Links in 2-surfaces in R3.Fundamental group; the knot group. The knot quandle and the Conway algebra. Kauffman's approach to Jones polynomial. Properties of Jones polynomials. Khovanov's complex. Theory of braids. Braids, links and representations of braid groups. Braids and links. Braid construction algorithms. Algorithms of braid recognition. Markov's theorem; the Yang-Baxter equation. Vassiliev's invariants. Definition and Basic notions of Vassiliev invariant theory. The chord diagram algebra. The Kontsevich integral and formulae for the Vassiliev invariants. Atoms and d-diagrams. Atoms, height atoms and knots. The bracket semigroup of knots. Virtual knots. Basic definitions and motivation. Invariant polynomials of virtual links. Generalised Jones-Kauffman polynomial. Long virtual knots and their invariants. Virtual braids. Other theories. 3-manifolds and knots in 3-manifolds. Legendrian knots and their invariants. Independence of Reidemeister moves.


Vassily Olegovich Manturov is professor of Geometry and Topology at Bauman Moscow State Technical University.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.