Markowitz | Risk-Return Analysis Volume 3 | Buch | 978-0-07-181831-5 | www.sack.de

Buch, Englisch, 338 Seiten, Format (B × H): 157 mm x 235 mm, Gewicht: 641 g

Markowitz

Risk-Return Analysis Volume 3


Erscheinungsjahr 2020
ISBN: 978-0-07-181831-5
Verlag: McGraw Hill

Buch, Englisch, 338 Seiten, Format (B × H): 157 mm x 235 mm, Gewicht: 641 g

ISBN: 978-0-07-181831-5
Verlag: McGraw Hill


The man who created investing as we know it provides critical insights, knowledge, and tools for generating steady profits in today’s economy.When Harry Markowitz introduced the concept of examining and purchasing a range of diverse stocks—in essence, the practice of creating a portfolio—he transformed the world of investing. The idea was novel, even radical, when he presented it in 1952 for his dissertation. Today, it’s second-nature to the majority of investors worldwide. Now, the legendary economist returns with the third volume of his groundbreaking four-volume Risk-Return Analysis series, where he corrects common misperceptions about Modern Portfolio Theory (MPT) and provides critical insight into the practice of MPT over the last 60 years. He guides you through process of making rational decisions in the face of uncertainty—making this a critical guide to investing in today’s economy. From the Laffer Curve to RDM Reasoning to Finite Ordinal Arithmetic to the ideas and concepts of some of history’s most influential thinkers, Markowitz provides a wealth and depth of financial knowledge, wisdom, and insights you would be hard pressed to find elsewhere. This deep dive into the theories and practices of the investing legend is what you need to master strategic portfolio management designed to generate profits in good times and bad.

Markowitz Risk-Return Analysis Volume 3 jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Preface

The Rational Decision Maker
Words of Wisdom
John von Neumann  Acknowledgments

13. Predecessors

Introduction

René Descartes

There Is No “Is,” Only “Was” and “Will Be”

Working Hypotheses

RDM Reasoning

David Hume

Eudaimonia

Financial Economic Discoveries

Economic Analyses That Have Stood
the Test of Time

Constructive Skepticism

Isaac Newton, Philosopher

Fields Other Than Physics

Karl Popper

Mysticism

Caveats

Charles Peirce

Immanuel Kant

What an RDM Can Know A Priori

14. Deduction First Principles

Introduction

The Great Debate

One More Reason for Studying
Cantor’s Set Theory

“Very Few Understood It”

Finite Cardinal Arithmetic

Relative Sizes of Finite Sets

Finite Ordinal Arithmetic

Standard Ordered Sets (SOSs)

Finite Cardinal and Ordinal Numbers

Cantor (101)

Theorem

Proof

Corollary

Proof

Transfinite Cardinal Numbers

The Continuum Hypothesis

Transfinite Cardinal Arithmetic

Lemma

Transfinite Ordinal Numbers
Examples of Well-Ordered and
Not Well-Ordered Sets
Transfinite Ordinal Arithmetic
Extended SOSs
Lemma
Proof
The Paradoxes (a.k.a. Antimonies)

Three Directions

From Aristotle to Hume to Hilbert

British Empiricism versus Continental
Rationalism

Who Created What?

Cantor Reconsidered

Brouwer’s Objections

Axiomatic Set Theory

Peano’s Axioms (PAs)

Hilbert’s Programs

Whitehead and Russell

Zermelo’s Axioms

The “Axiom of Choice”

The Trichotomy Equivalent to the Axiom of Choice

Kurt Gödel (1906–1978)

Thoralf Skolem (1887–1863)

15. Logic is Programming is Logic

Introduction

Terminology

Number Systems and the EAS Structures
Built on Them

Deductive Systems as Programming Languages

A Variety of Deductive DSSs

Alternative Rules of Inference

“Ladders” and “Fire Escapes”

Organon 2000: From Ancient Greek
to “Symbolic Logic”

So, What’s New?

Immediate Consequences

Two Types of Set Ownership

Modeling Modeling

EAS-E Deduction: Status

16. The Infinite and The Infinitesimal

Points and Lines

Fields

Constructing the Infinitesimals

Infinite-Dimensional Utility Analysis

The Algebraic Structure Called “A Field”

17. Induction Theory

Introduction

The Story Thus Far

Concepts

Basic Relationships

Examples

“Objective” Probability

The Formal M59 Model

Initial Consequences

Bayes’s Rule

A Bayesian View of MVA

Judgment, Approximation and Axiom III

(1) A Philosophical Difference between
S54 and M59

Examples of Clearly “Objective” Probabilities”

Propositions about Propositions

A Problem with Axiom II

Are the pj  Probabilities the Scaling of the pj
?
The pj
“Mix on a Par” with Objective Probabilities

18. Induction Practice

Introduction

R. A. Fisher and Neyman-Pearson Hypothesis Tests

The Likelihood Principle

Andrei Kolmogorov

A Model of Models

The R.A. Fisher Argument

Bayesian Conjugate Prior Procedures

19. Eudaimonia

Review

Eudaimonia for the Masses

Notes

References

Index


Markowitz, Harry M.
Harry M. Markowitz is president of Harry Markowitz Co. in San Diego. In 1990, he was jointly awarded the Nobel Prize for economics with Merton Miller and William Sharpe.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.