Marsland | Machine Learning | Buch | 978-1-4665-8328-3 | www.sack.de

Buch, Englisch, 458 Seiten, Format (B × H): 179 mm x 261 mm, Gewicht: 1006 g

Marsland

Machine Learning

An Algorithmic Perspective, Second Edition
2. Auflage 2014
ISBN: 978-1-4665-8328-3
Verlag: CRC Press

An Algorithmic Perspective, Second Edition

Buch, Englisch, 458 Seiten, Format (B × H): 179 mm x 261 mm, Gewicht: 1006 g

ISBN: 978-1-4665-8328-3
Verlag: CRC Press


A Proven, Hands-On Approach for Students without a Strong Statistical Foundation

Since the best-selling first edition was published, there have been several prominent developments in the field of machine learning, including the increasing work on the statistical interpretations of machine learning algorithms. Unfortunately, computer science students without a strong statistical background often find it hard to get started in this area.

Remedying this deficiency, Machine Learning: An Algorithmic Perspective, Second Edition helps students understand the algorithms of machine learning. It puts them on a path toward mastering the relevant mathematics and statistics as well as the necessary programming and experimentation.

New to the Second Edition

- Two new chapters on deep belief networks and Gaussian processes

- Reorganization of the chapters to make a more natural flow of content

- Revision of the support vector machine material, including a simple implementation for experiments

- New material on random forests, the perceptron convergence theorem, accuracy methods, and conjugate gradient optimization for the multi-layer perceptron

- Additional discussions of the Kalman and particle filters

- Improved code, including better use of naming conventions in Python

Suitable for both an introductory one-semester course and more advanced courses, the text strongly encourages students to practice with the code. Each chapter includes detailed examples along with further reading and problems. All of the code used to create the examples is available on the author’s website.

Marsland Machine Learning jetzt bestellen!

Zielgruppe


Undergraduate


Autoren/Hrsg.


Weitere Infos & Material


Introduction. Linear Discriminants. The Multi-Layer Perceptron. Radial Basis Functions and Splines. Support Vector Machines. Learning with Trees. Decision by Committee: Ensemble Learning. Probability and Learning. Unsupervised Learning. Dimensionality Reduction. Optimization and Search. Evolutionary Learning. Reinforcement Learning. Markov Chain Monte Carlo (MCMC) Methods. Graphical Models. Python.


Stephen Marsland is a professor of scientific computing and the postgraduate director of the School of Engineering and Advanced Technology (SEAT) at Massey University. His research interests in mathematical computing include shape spaces, Euler equations, machine learning, and algorithms. He received a PhD from Manchester University



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.