Martinac / Jørgensen / Ma | Energy Informatics | Buch | 978-3-032-03097-9 | www.sack.de

Buch, Englisch, 409 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 645 g

Reihe: Lecture Notes in Computer Science

Martinac / Jørgensen / Ma

Energy Informatics

First Nordic Energy Informatics Academy Conference, EIA Nordic 2025, Stockholm, Sweden, August 20-22, 2025, Proceedings, Part II
Erscheinungsjahr 2025
ISBN: 978-3-032-03097-9
Verlag: Springer

First Nordic Energy Informatics Academy Conference, EIA Nordic 2025, Stockholm, Sweden, August 20-22, 2025, Proceedings, Part II

Buch, Englisch, 409 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 645 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-032-03097-9
Verlag: Springer


This book constitutes the proceedings of the First Nordic Energy Informatics Academy Conference, Nordic EIA 2025, which took place in Stockholm, Sweden, in August 2025.

The 43 full papers and 8 short papers accepted were carefully reviewed and selected from 65 submissions. They were organized in topical sections as follows: 

Part I:
Energy Forecasting and Intelligent Control Systems; District HEating, Thermal Systems, and Retrofit Strategies; Building Simulation, Urban Energy, and Environmental Sensing; Industrial Process Efficiency and Biomass Utlilzation; Energy Informatics for Electric Vehicles and Mobility Systems; Multi-Agent Systems and Local Market Coordination; 

Part II: 
Policy, Metrics, and Infrastructure Performance; Smart Buliding Systems and Semantic Data Integration; Prosumer Optimization and Energy Storage in Local Energy Communities, Grid-Oriented AI, Simulation, and Resilience; Non-Intrusive Load Monitoring and Data Competitions.

Martinac / Jørgensen / Ma Energy Informatics jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


.- Policy, Metrics, and Infrastructure Performance.

.- Proper definitions of micro grid metrics are needed! - a generalizable framework.

.- Solar-Geothermal Power "HGS-ORC" System for Energy Co-generation: En ergy, Economic and Environmental analysis: Algerian case.

.- Towards the Integration of Data Space Technology in Hydrogen Research
Workflows.

.- Comparison of Outages Trends and Statistics in Nordic Countries Across
Distribution Networks and their Impacts.

.- Managing Risk in Distribution Systems with Solar Generation: A Case
Study Using the MATPOWER Optimal Scheduling Tool.

.- Smart Energy Management System With Individual Load Monitoring.

.- Smart Building Systems and Semantic Data Integration.

.- Towards a Taxonomy for Application of Machine Learning and Artificial Intelligence in Building and District Energy Management Systems.

.- A Dynamic Semantic Data Modeling Approach: Application to Flexible
HVAC Zones.

.- Leveraging Generative AI and semantic data for improved operation of a
real-life building.

.- Development of an LSTM-Based Model for High-Resolution Downsampling
and Reconstruction of HVAC Chiller Flow Data.

.- Data-Driven Optimal Air-Balancing Control for Multizone Ventilation Systems with Design-to-Operation Adaptation.

.- Prosumer Optimization and Energy Storage in Local Energy Communities.

.- Evaluating the Potential for Developing Local Energy Communities in Sweden: Case Studies at Jättesten and Chalmers Campus.

.- Data-driven Correlated Uncertainty Sets for PV Generation and Electricity
Demand.

.- Scheduling Heat Pumps for Balancing Thermal Storage and Grid Export.

.- Battery Energy Storage Integration with BIPV Systems: A Multi-Scenario
Economic Analysis and Optimization.

.- Grid-Oriented AI, Simulation, and Resilience.

.- A data-driven analysis of unscheduled flows in the European power system.

.- Green Hydrogen under Uncertainty: Evaluating Power-to-X Strategies Using
Agent-Based Simulation and Multi-Criteria Decision Framework.

.- Synthesizing Fault Localization Datasets.

.- Machine Learning-Based Cyberattack Detection in Power Data.

.- Optimization of Second-Life Battery Energy Storage System in Buildings
with Photovoltaic Panels: A Norwegian Case Study.

.- Non-Intrusive Load Monitoring and Data Competitions.

.- ADRENALIN: Energy Data Preparation and Validation for HVAC Load
Disaggregation in Commercial Buildings.

.-  Advancing Non-Intrusive Load Monitoring: Insights from the Winning Algorithms in the ADRENALIN 2024 Load Disaggregation Competition.

.- Comparison of Three Algorithms for Low-Frequency Temperature Dependent Load Disaggregation in Buildings Without Submetering.

.- Lessons Learned from the ADRENALIN Load Disaggregation Challenge.

.- Business Model Innovation in Data Competitions: Insights from the 2024
ADRENALIN Load Disaggregation Challenge.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.