Matloff | Parallel Computing for Data Science | Buch | 978-1-4665-8701-4 | sack.de

Buch, Englisch, 328 Seiten, Format (B × H): 164 mm x 243 mm, Gewicht: 637 g

Reihe: Chapman & Hall/CRC The R Series

Matloff

Parallel Computing for Data Science

With Examples in R, C++ and Cuda
1. Auflage 2015
ISBN: 978-1-4665-8701-4
Verlag: CRC Press

With Examples in R, C++ and Cuda

Buch, Englisch, 328 Seiten, Format (B × H): 164 mm x 243 mm, Gewicht: 637 g

Reihe: Chapman & Hall/CRC The R Series

ISBN: 978-1-4665-8701-4
Verlag: CRC Press


Parallel Computing for Data Science: With Examples in R, C++ and CUDA is one of the first parallel computing books to concentrate exclusively on parallel data structures, algorithms, software tools, and applications in data science. It includes examples not only from the classic "n observations, p variables" matrix format but also from time series, network graph models, and numerous other structures common in data science. The examples illustrate the range of issues encountered in parallel programming.

With the main focus on computation, the book shows how to compute on three types of platforms: multicore systems, clusters, and graphics processing units (GPUs). It also discusses software packages that span more than one type of hardware and can be used from more than one type of programming language. Readers will find that the foundation established in this book will generalize well to other languages, such as Python and Julia.

Matloff Parallel Computing for Data Science jetzt bestellen!

Zielgruppe


Professional Practice & Development


Autoren/Hrsg.


Weitere Infos & Material


Introduction to Parallel Processing in R. "Why Is My Program So Slow?": Obstacles to Speed. Principles of Parallel Loop Scheduling. The Shared Memory Paradigm: A Gentle Introduction through R. The Shared Memory Paradigm: C Level. The Shared Memory Paradigm: GPUs. Thrust and Rth. The Message Passing Paradigm. MapReduce Computation. Parallel Sorting and Merging. Parallel Prefix Scan. Parallel Matrix Operations. Inherently Statistical Approaches: Subset Methods. Appendices.


Dr. Norman Matloff is a professor of computer science at the University of California, Davis, where he was a founding member of the Department of Statistics. He is a statistical consultant and a former database software developer. He has published numerous articles in prestigious journals, such as the ACM Transactions on Database Systems, ACM Transactions on Modeling and Computer Simulation, Annals of Probability, Biometrika, Communications of the ACM, and IEEE Transactions on Data Engineering. He earned a PhD in pure mathematics from UCLA, specializing in probability/functional analysis and statistics.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.