Buch, Englisch, 412 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 645 g
Reihe: Lecture Notes in Physics
With Python Examples
Buch, Englisch, 412 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 645 g
Reihe: Lecture Notes in Physics
ISBN: 978-3-030-73581-4
Verlag: Springer
This book introduces the phenomenology of gravitational lensing in an accessible manner and provides a thorough discussion of the related astrophysical applications. It is intended for advanced undergraduates and graduate students who want to start working in this rapidly evolving field. This includes also senior researchers who are interested in ongoing or future surveys and missions such as DES, Euclid, WFIRST, LSST.
The reader is guided through many fascinating topics related to gravitational lensing like the structure of our galaxy, the searching for exoplanets, the investigation of dark matter in galaxies and galaxy clusters, and several aspects of cosmology, including dark energy and the cosmic microwave background.
The author, who has gained valuable experience as academic teacher, guides the readers towards the comprehension of the theory of gravitational lensing and related observational techniques by using simple codes written in python. This approach, beyond facilitating the understanding of gravitational lensing, is preparatory for learning the python programming language which is gaining large popularity both in academia and in the private sector.
Zielgruppe
Graduate
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Astronomie Kosmologie, Urknalltheorie
- Naturwissenschaften Physik Angewandte Physik Astrophysik
- Naturwissenschaften Astronomie Astrophysik
- Naturwissenschaften Astronomie Astronomische Beobachtung: Observatorien, Instrumente, Methoden
- Naturwissenschaften Astronomie Astronomie: Allgemeines
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
Weitere Infos & Material
PART I: Generalities
1. Light deflection
1.1. Deflection of a light corpuscle
1.2. Deflection of light according to General Relativity
1.3. Deflection by an ensable of point masses
1.4. Deflection by an extended mass distribution
1.5. Light propagation through an inhomogeneous universe
1.6. Python examples
2. The general lens
2.1. Lens equation
2.2. Lensing potential
2.3. First order lens mapping
2.4 Magnification
2.5 Lensing to the second order
2.6 Time delay surface
2.7 Python examples
PART II: Applications of gravitational lensing
1. Microlensing
1.1 The point mass lens
1.2 Standard microlensing light curve
1.3 Microlensing parallax
1.4 Optical depth and event rate
1.5 Astrometric microlensing
1.6 Multiple point lenses
1.7 Planetary microlensing
1.8 Python examples
2. Strong lensing by galaxies and galaxy clusters
2.1 Axially symmetric lenses
2.2 Power-law lens
2.3 Softened lenses
2.4 Elliptical lenses
2.5 Substructures
2.6 External shear
2.7 Parametric lens modeling
2.8 Non-parametric lens modeling
2.9 Searches for strong lenses
2.10 Cosmic telescopes
2.11 Strong lensing cosmography
2.12 Time-delay cosmology
2.13 Python examples
3. Weak lensing by virialized structures
3.1 Shear measurements
3.2 Tangential and cross component of the shear
3.3 Lens mass measurements
3.4 Two-dimensional mass mapping
3.5 Mass-sheet degeneracy
3.6 Python examples
4. Weak lensing by the large-scale-structure
4.1 Effective convergence
4.2 Limber’s equation
4.3 Shear correlation functions
4.4 Shear in apertures and aperture mass
4.5 E- and B-modes
4.6 Python examples
5. Lensing of the Cosmic Microwave Background
5.1 Lensing of the CMB temperature
5.2 Gravitational lensing of the CMB polarization
5.3 Recovery of the gravitational potential
5.4 Python examples




