Balas / Mishra / Kumar | Handbook of Deep Learning in Biomedical Engineering: Techniques and Applications | Buch | 978-0-12-823014-5 | sack.de

Buch, Englisch, 320 Seiten, Format (B × H): 191 mm x 235 mm, Gewicht: 630 g

Balas / Mishra / Kumar

Handbook of Deep Learning in Biomedical Engineering: Techniques and Applications

Buch, Englisch, 320 Seiten, Format (B × H): 191 mm x 235 mm, Gewicht: 630 g

ISBN: 978-0-12-823014-5
Verlag: ACADEMIC PR INC


Deep Learning (DL) is a method of machine learning, running over Artificial Neural Networks, that uses multiple layers to extract high-level features from large amounts of raw data. Deep Learning methods apply levels of learning to transform input data into more abstract and composite information. Handbook for Deep Learning in Biomedical Engineering: Techniques and Applications gives readers a complete overview of the essential concepts of Deep Learning and its applications in the field of Biomedical Engineering. Deep learning has been rapidly developed in recent years, in terms of both methodological constructs and practical applications. Deep Learning provides computational models of multiple processing layers to learn and represent data with higher levels of abstraction. It is able to implicitly capture intricate structures of large-scale data and is ideally suited to many of the hardware architectures that are currently available. The ever-expanding amount of data that can be gathered through biomedical and clinical information sensing devices necessitates the development of machine learning and AI techniques such as Deep Learning and Convolutional Neural Networks to process and evaluate the data. Some examples of biomedical and clinical sensing devices that use Deep Learning include: Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Ultrasound, Single Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET), Magnetic Particle Imaging, EE/MEG, Optical Microscopy and Tomography, Photoacoustic Tomography, Electron Tomography, and Atomic Force Microscopy. Handbook for Deep Learning in Biomedical Engineering: Techniques and Applications provides the most complete coverage of Deep Learning applications in biomedical engineering available, including detailed real-world applications in areas such as computational neuroscience, neuroimaging, data fusion, medical image processing, neurological disorder diagnosis for diseases such as Alzheimer's, ADHD, and ASD, tumor prediction, as well as translational multimodal imaging analysis.
Balas / Mishra / Kumar Handbook of Deep Learning in Biomedical Engineering: Techniques and Applications jetzt bestellen!

Weitere Infos & Material


1. Application of deep learning in biomedical engineering
2. Applications, algorithms, tools directly related to deep learning
3. Computational Neuroscience; Neuroimaging and Time Series data (including MRI/fMRI/CT, EEG/MEG, etc.) studies;
4. Data Fusion for HealthCare, especially Biomedical images of different nature (X-ray, CT, etc.);
5. Deep neural network in medical image processing (RTG, USG, CT, PET, OCT and others)
6. Early diagnosis of specific diseases like Alzheimer, ADHD, ASD etc
7. Manifold learning, classification, clustering and regression in Neuroimaging data analysis;
8. Multimodal imaging techniques: data acquisition, reconstruction; 2D, 3D, 4D imaging, etc.)
9. Optimization by deep neural networks, Multi-dimensional deep learning
10. Prediction of tumor from MRI using deep learning
11. Theoretical understanding of deep learning in biomedical engineering
12. Translational multimodality imaging and biomedical applications (e.g., detection, diagnostic analysis, quantitative measurements, image guidance of ultrasonography)


Kumar, Raghvendra
Raghvendra Kumar is working as an Associate Professor in Computer Science and Engineering Department at GIET University, India. He received BTech, MTech, and PhD in Computer Science and Engineering, India, and Postdoc Fellow from the Institute of Information Technology, Virtual Reality and Multimedia, Vietnam. He has published a number of research papers in international journals and conferences. His research areas are computer networks, data mining, cloud computing, and secure multiparty computations, theory of computer science, and design of algorithms. He authored and edited 23 computer science books in field of IoT, data mining, and biomedical engineering.

Mishra, Brojo Kishore
Dr. Brojo Kishore Mishra is currently working as a Professor in the Department of Computer Science and Engineering at the GIET University, Gunupur-765022, India. He received his PhD degree in Computer Science from the Berhampur University in 2012. He has published more than 30 research papers in national and international conference proceedings, 25 research papers in peer-reviewed journals, and 22 book chapters; authored 2 books; and edited 4 books. His research interests include data mining, machine learning, soft computing, and security. He has organized and co organized local and international conferences and also edited several special issues for journals. He is the Senior Member of IEEE and Life Member of CSI, ISTE. He is the Editor of CSI Journal of Computing.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.