Nield | Mathe-Basics für Data Scientists | Buch | 978-3-96009-215-5 | sack.de

Buch, Deutsch, 336 Seiten, Format (B × H): 164 mm x 238 mm, Gewicht: 624 g

Reihe: Animals

Nield

Mathe-Basics für Data Scientists

Lineare Algebra, Statistik und Wahrscheinlichkeitsrechnung für die Datenanalyse
1. Auflage 2023
ISBN: 978-3-96009-215-5
Verlag: dpunkt.Verlag

Lineare Algebra, Statistik und Wahrscheinlichkeitsrechnung für die Datenanalyse

Buch, Deutsch, 336 Seiten, Format (B × H): 164 mm x 238 mm, Gewicht: 624 g

Reihe: Animals

ISBN: 978-3-96009-215-5
Verlag: dpunkt.Verlag


Frischen Sie Ihre Mathematik-Kenntnisse für Datenanalysen, Machine Learning und Neuronale Netze auf!Dieses Buch richtet sich an angehende und fortgeschrittene Data Scientists sowie Programmierer*innen, die sich die mathematischen Grundlagen der Data Science aneignen wollenBesonders gut nachvollziehbar durch minimale mathematische Fachterminologie, praxisnahe Beispiele und zahlreiche AbbildungenMit Übungen und Lösungen, um das Gelernte zu vertiefenFür Studium und Beruf
Um als Data Scientist erfolgreich zu sein, müssen Sie über ein solides mathematisches Grundwissen verfügen. Dieses Buch bietet einen leicht verständlichen Überblick über die Mathematik, die Sie in der Data Science benötigen. Thomas Nield führt Sie Schritt für Schritt durch Bereiche wie Infinitesimalrechnung, Wahrscheinlichkeit, lineare Algebra, Statistik und Hypothesentests und zeigt Ihnen, wie diese Mathe-Basics beispielsweise in der linearen und logistischen Regression und in neuronalen Netzen eingesetzt werden. Zusätzlich erhalten Sie Einblicke in den aktuellen Stand der Data Science und erfahren, wie Sie dieses Wissen für Ihre Karriere als Data Scientist nutzen.
Verwenden Sie Python-Code und Bibliotheken wie SymPy, NumPy und scikit-learn, um grundlegende mathematische Konzepte wie Infinitesimalrechnung, lineare Algebra, Statistik und maschinelles Lernen zu erkundenVerstehen Sie Techniken wie lineare und logistische Regression und neuronale Netze durch gut nachvollziehbare Erklärungen und ein Minimum an mathematischer TerminologieWenden Sie deskriptive Statistik und Hypothesentests auf einen Datensatz an, um p-Werte und statistische Signifikanz zu interpretierenManipulieren Sie Vektoren und Matrizen und führen Sie Matrixzerlegung durchVertiefen Sie Ihre Kenntnisse in Infinitesimal- und Wahrscheinlichkeitsrechnung, Statistik und linearer Algebra und wenden Sie sie auf Regressionsmodelle einschließlich neuronaler Netze anErfahren Sie, wie Sie Ihre Kenntnisse und Fähigkeiten in der Datenanalyse optimieren und gängige Fehler vermeiden, um auf dem Data-Science-Arbeitsmarkt zu überzeugen

Nield Mathe-Basics für Data Scientists jetzt bestellen!

Zielgruppe


- Data Scientists: Einsteiger*innen und Fortgeschrittene
- Programmierer*innen, die sich Grundlagen der Data Science aneignen wollen

Weitere Infos & Material


Nield, Thomas
Thomas Nield ist der Gründer der Nield Consulting Group sowie Dozent bei O'Reilly Media und an der University of Southern California. Er hat Freude daran, technische Inhalte für diejenigen verständlich und gut nutzbar zu machen, die mit ihnen nicht vertraut sind oder sich von ihnen abgeschreckt fühlen. Thomas Nield unterrichtet regelmäßig Kurse zu Datenanalyse, Machine Learning, mathematischer Optimierung, KI-Systemsicherheit und praktischer künstlicher Intelligenz. Er ist Autor von zwei Büchern, Getting Started with SQL (O'Reilly) und Learning RxJava (Packt). Außerdem ist er der Gründer und Erfinder von Yawman Flight, einem Unternehmen, das Handsteuerungen für Flugsimulatoren und unbemannte Luftfahrzeuge entwickelt.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.