Özmen | Robust Optimization of Spline Models and Complex Regulatory Networks | Buch | 978-3-319-80890-1 | sack.de

Buch, Englisch, 139 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 2409 g

Reihe: Contributions to Management Science

Özmen

Robust Optimization of Spline Models and Complex Regulatory Networks

Theory, Methods and Applications
Softcover Nachdruck of the original 1. Auflage 2016
ISBN: 978-3-319-80890-1
Verlag: Springer International Publishing

Theory, Methods and Applications

Buch, Englisch, 139 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 2409 g

Reihe: Contributions to Management Science

ISBN: 978-3-319-80890-1
Verlag: Springer International Publishing


This book introduces methods of robust optimization in multivariate adaptive regression splines (MARS) and Conic MARS in order to handle uncertainty and non-linearity. The proposed techniques are implemented and explained in two-model regulatory systems that can be found in the financial sector and in the contexts of banking, environmental protection, system biology and medicine. The book provides necessary background information on multi-model regulatory networks, optimization and regression. It presents the theory of and approaches to robust (conic) multivariate adaptive regression splines - R(C)MARS – and robust (conic) generalized partial linear models – R(C)GPLM – under polyhedral uncertainty. Further, it introduces spline regression models for multi-model regulatory networks and interprets (C)MARS results based on different datasets for the implementation. It explains robust optimization in these models in terms of both the theory and methodology. In this context it studies R(C)MARS results with different uncertainty scenarios for a numerical example. Lastly, the book demonstrates the implementation of the method in a number of applications from the financial, energy, and environmental sectors, and provides an outlook on future research.
Özmen Robust Optimization of Spline Models and Complex Regulatory Networks jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Introduction.- Mathematical Methods Used.- New Robust Analytic Tools.- Spline Regression Models for Complex Multi-Model Regulatory Networks.- Robust Optimization in Spline Regression Models for Regulatory Networks Under Polyhedral Uncertainty.- Real-World Application with Our Robust Tools.- Conclusion and Outlook.


Ayse Özmen has affiliation at Turkish Energy
Foundation(TENVA)and Institute of Applied Mathematics of Middle East Technical
University (METU), Ankara, Turkey. Her research is on OR, optimization, energy
modelling, renewable energy systems, network modelling, regulatory networks, data
mining. She received her Doctorate in Scientific Computing at Institute for
Applied Mathematics at METU.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.