A Projects-Based Approach
Buch, Englisch, 329 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 663 g
ISBN: 978-1-4842-7911-3
Verlag: Apress
Harness the power of MATLAB for deep-learning challenges. Practical MATLAB Deep Learning, Second Edition, remains a one-of a-kind book that provides an introduction to deep learning and using MATLAB's deep-learning toolboxes. In this book, you’ll see how these toolboxes provide the complete set of functions needed to implement all aspects of deep learning. This edition includes new and expanded projects, and covers generative deep learning and reinforcement learning.
Over the course of the book, you'll learn to model complex systems and apply deep learning to problems in those areas. Applications include:
- Aircraft navigation
- An aircraft that lands on Titan, the moon of Saturn, using reinforcement learning
- Stock market prediction
- Natural language processing
- Music creation usng generative deep learning
- Plasma control
- Earth sensor processing for spacecraft
- MATLAB Bluetooth data acquisition applied to dance physics
What You Will Learn
- Explore deep learning using MATLAB and compare it to algorithms
- Write a deep learning function in MATLAB and train it with examples
- Use MATLAB toolboxes related to deep learning
- Implement tokamak disruption prediction
- Now includes reinforcement learning
Engineers, data scientists, and students wanting a book rich in examples on deep learning using MATLAB.
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Programmier- und Skriptsprachen
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz
- Mathematik | Informatik EDV | Informatik Informatik Mathematik für Informatiker
- Mathematik | Informatik EDV | Informatik Technische Informatik Hardware: Grundlagen und Allgemeines
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Programmierung: Methoden und Allgemeines
Weitere Infos & Material
1. What is deep learning?.- 2. MATLAB Toolboxes.- 3. Finding Circles.- 4. Classifying Movies.- 5. Algorithmic Deep Learning.- 6. Tokamak Disruption Detection.- 7. Classifying a Pirouette.- 8. Completing Sentences.- 9. Terrain Based Navigation.- 10. Stock Prediction.- 11. Image Classification.- 12. Orbit Determination.- 13. Earth Sensors.- 14. Generative Modeling of Music.- 15. Reinforcement Learning.- Bibliography.




