Pardalos / Uryasev | Stochastic Optimization | Buch | sack.de

Pardalos / Uryasev Stochastic Optimization



Algorithms and Applications

2001, Band: 54, 435 Seiten, Gebunden, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 1780 g Reihe: Applied Optimization
ISBN: 978-0-7923-6951-6
Verlag: Springer US


Pardalos / Uryasev Stochastic Optimization

Stochastic programming is the study of procedures for decision making under the presence of uncertainties and risks. Stochastic programming approaches have been successfully used in a number of areas such as energy and production planning, telecommunications, and transportation. Recently, the practical experience gained in stochastic programming has been expanded to a much larger spectrum of applications including financial modeling, risk management, and probabilistic risk analysis. Major topics in this volume include: (1) advances in theory and implementation of stochastic programming algorithms; (2) sensitivity analysis of stochastic systems; (3) stochastic programming applications and other related topics.
Audience: Researchers and academies working in optimization, computer modeling, operations research and financial engineering. The book is appropriate as supplementary reading in courses on optimization and financial engineering.

Zielgruppe


Research

Weitere Infos & Material


Preface. Output analysis for approximated stochastic programs; J. Dupacová. Combinatorial Randomized Rounding: Boosting Randomized Rounding with Combinatorial Arguments; P. Efraimidis, P.G. Spirakis. Statutory Regulation of Casualty Insurance Companies: An Example from Norway with Stochastic Programming Analysis; A. Gaivoronski, et al. Option pricing in a world with arbitrage; X. Guo, L. Shepp. Monte Carlo Methods for Discrete Stochastic Optimization; T. Homem-de-Mello. Discrete Approximation in Quantile Problem of Portfolio Selection; A. Kibzun, R. Lepp. Optimizing electricity distribution using two-stage integer recourse models; W.K. Klein Haneveld, M.H. van der Vlerk. A Finite-Dimensional Approach to Infinite-Dimensional Constraints in Stochastic Programming Duality; L. Korf. Non-Linear Risk of Linear Instruments; A. Kreinin. Multialgorithms for Parallel Computing: A New Paradigm for Optimization; J. Nazareth. Convergence Rate of Incremental Subgradient Algorithms; A. Nedic, D. Bertsekas. Transient Stochastic Models for Search Patterns; E. Pasiliao. Value-at-Risk Based Portfolio Optimization; A. Puelz. Combinatorial Optimization, Cross-Entropy, Ants and Rare Events; R.Y. Rubinstein. Consistency of Statistical Estimators: the Epigraphical View; G. Salinetti. Hierarchical Sparsity in Multistage Convex Stochastic Programs; M. Steinbach. Conditional Value-at-Risk: Optimization Approach; S. Uryasev, R.T. Rockafellar.


Ihre Fragen, Wünsche oder Anmerkungen

Ihre Nachricht*
Wie möchten Sie kontaktiert werden?
Anrede*
Titel
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Firma
Telefon
Fax
Bestellnr.
Kundennr.
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.