Buch, Englisch, 150 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 265 g
Reihe: Advances in Database Systems
Buch, Englisch, 150 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 265 g
Reihe: Advances in Database Systems
ISBN: 978-1-4419-4352-1
Verlag: Springer US
This book provides balanced coverage of the existing results on sequence data mining as well as pattern types and associated pattern mining methods. While there are several books on data mining and sequence data analysis, currently there are no books that balance both of these topics. This volume fills in the gap, allowing readers to access the state-of-the-art results in one place. Sequence Data Mining is designed for professionals working in bioinformatics, genomics, web services, and financial data analysis. This book is also suitable for advanced-level students in computer science and bioengineering.
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Biowissenschaften Biowissenschaften
- Mathematik | Informatik EDV | Informatik Technische Informatik Netzwerk-Hardware
- Mathematik | Informatik EDV | Informatik Technische Informatik Computersicherheit Datensicherheit, Datenschutz
- Naturwissenschaften Biowissenschaften Angewandte Biologie Bioinformatik
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Datenkompression, Dokumentaustauschformate
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Bioinformatik
- Mathematik | Informatik EDV | Informatik Technische Informatik Externe Speicher & Peripheriegeräte
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Automatische Datenerfassung, Datenanalyse
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Zeichen- und Zahlendarstellungen
Weitere Infos & Material
Frequent and Closed Sequence Patterns.- Classification, Clustering, Features and Distances of Sequence Data.- Sequence Motifs: Identifying and Characterizing Sequence Families.- Mining Partial Orders from Sequences.- Distinguishing Sequence Patterns.- Related Topics.