Raj P.M. / Srinivasa / Mohan | Practical Social Network Analysis with Python | Buch | 978-3-030-07241-4 | sack.de

Buch, Englisch, 329 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 628 g

Reihe: Computer Communications and Networks

Raj P.M. / Srinivasa / Mohan

Practical Social Network Analysis with Python


Softcover Nachdruck of the original 1. Auflage 2018
ISBN: 978-3-030-07241-4
Verlag: Springer International Publishing

Buch, Englisch, 329 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 628 g

Reihe: Computer Communications and Networks

ISBN: 978-3-030-07241-4
Verlag: Springer International Publishing


This book focuses on social network analysis from a computational perspective, introducing readers to the fundamental aspects of network theory by discussing the various metrics used to measure the social network. It covers different forms of graphs and their analysis using techniques like filtering, clustering and rule mining, as well as important theories like small world phenomenon. It also presents methods for identifying influential nodes in the network and information dissemination models. Further, it uses examples to explain the tools for visualising large-scale networks, and explores emerging topics like big data and deep learning in the context of social network analysis.

With the Internet becoming part of our everyday lives, social networking tools are used as the primary means of communication. And as the volume and speed of such data is increasing rapidly, there is a need to apply computational techniques to interpret and understand it. Moreover, relationships in molecular structures, co-authors in scientific journals, and developers in a software community can also be understood better by visualising them as networks.

This book brings together the theory and practice of social network analysis and includes mathematical concepts, computational techniques and examples from the real world to offer readers an overview of this domain.


Raj P.M. / Srinivasa / Mohan Practical Social Network Analysis with Python jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Introduction

Basics of Social Networks

Random Graphs and Small World Phenomenon

Analysis of Social Networks

Centrality and Influential Nodes

Information Propagation in Social Networks

Visual Modelling of Social Networks

Processing Large Scale Social Networks

Deep Learning for Social Networks

Applications of Social Network Analysis

Appendix: IPython Tutorials


Dr. Krishna Raj P.M. is an Associate Professor at the Department of Information Science and Engineering at Ramaiah Institute of Technology, Bengaluru, India.

Mr. Ankith Mohan is a Research Associate at the same institution.

Dr. Srinivasa K.G. is an Associate Professor at the Department of Information Technology at Ch. Brahm Prakash Government Engineering College, Delhi, India.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.