Buch, Englisch, 442 Seiten, Format (B × H): 178 mm x 260 mm, Gewicht: 830 g
A Bayesian Perspective
Buch, Englisch, 442 Seiten, Format (B × H): 178 mm x 260 mm, Gewicht: 830 g
Reihe: Chapman & Hall/CRC Biostatistics Series
ISBN: 978-0-8247-9034-9
Verlag: Taylor & Francis Inc
This volume describes how to conceptualize, perform, and critique traditional generalized linear models (GLMs) from a Bayesian perspective and how to use modern computational methods to summarize inferences using simulation. Introducing dynamic modeling for GLMs and containing over 1000 references and equations, Generalized Linear Models considers parametric and semiparametric approaches to overdispersed GLMs, presents methods of analyzing correlated binary data using latent variables. It also proposes a semiparametric method to model link functions for binary response data, and identifies areas of important future research and new applications of GLMs.
Zielgruppe
Statisticians, biostatisticians, and applied statisticians in the pharmaceutical industry and medical centers, and graduate-level students in these disciplines.
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Part 1 Extending the GLMs. Part 2 Categorical and longitudinal data. Part 3 Semiparametric approaches. Part 4 Model diagnositics and value selection in GLMs. Part 5 Challenging problems in GLMs