Roffel / Betlem | Advanced Practical Process Control | Buch | 978-3-540-40480-4 | www.sack.de

Buch, Englisch, 309 Seiten, Book w. online files / update, Format (B × H): 155 mm x 235 mm, Gewicht: 644 g

Roffel / Betlem

Advanced Practical Process Control


2004
ISBN: 978-3-540-40480-4
Verlag: Springer

Buch, Englisch, 309 Seiten, Book w. online files / update, Format (B × H): 155 mm x 235 mm, Gewicht: 644 g

ISBN: 978-3-540-40480-4
Verlag: Springer


An application-oriented approach to process control. The reference text systematically explains process identification, control and optimization, the three key steps needed to solve a multivariable control problem. Theory is discussed as far as it is needed to understand and solve the defined problem, while numerous examples written in MATLAB illustrate the problem-solving approach.

Roffel / Betlem Advanced Practical Process Control jetzt bestellen!

Zielgruppe


Graduate


Autoren/Hrsg.


Weitere Infos & Material


1 Introduction to Advanced Process Control Concepts.- 1.1 Process Time Constant.- 1.2 Domain Transformations.- 1.3 Laplace Transformation.- 1.4 Discrete Approximations.- 1.5 z-Transforms.- 1.6 Advanced and Modified z-Transforms.- 1.7 Common Elements in Control.- 1.8 The Smith Predictor.- 1.9 Feed-forward Control.- 1.10 Feed-forward Control in a Smith Predictor.- 1.11 Dahlin’s Control Algorithm.- References.- 2 Process Simulation.- 2.1 Simulation using Matlab Simulink.- 2.2 Simulation of Feed-forward Control.- 2.3 Control Simulation of a 2x2 System.- 2.4 Simulation of Dahlin’s Control Algorithm.- 3 Process Modeling and Identification.- 3.1 Model Applications.- 3.2 Types of Models.- 3.3 Empirical (linear) Dynamic Models.- 3.4 Model Structure Considerations.- 3.5 Model Identification.- References.- 4 Identification Examples.- 4.1 SISO Furnace Parametric Model Identification.- 4.2 MISO Parametric Model Identification.- 4.3 MISO Non-parametric Identification of a Non-integrating Process.- 4.4 MIMO Identification of an Integrating and Non-integrating Process.- 4.5 Design of Plant Experiments.- 4.5.1 Nature of Input Sequence.- 4.5.2 PRBS Type Input.- 4.5.3 Step Type Input.- 4.5.4 Type of Experiment.- 4.6 Data File Layout.- 4.7 Conversion of Model Structures.- 4.8 Example and Comparison of Open and Closed Loop Identification.- References.- 5 Linear Multivariable Control.- 5.1 Interaction in Multivariable Systems.- 5.2 Dynamic Matrix Control.- 5.3 Properties of Commercial MPC Packages.- References.- 6 Multivariable Optimal Constraint Control Algorithm.- 6.1 General Overview.- 6.2 Model Formulation for Systems with Dead Time.- 6.3 Model Formulation for Multivariable Processes.- 6.4 Model Formulation for Multivariable Processes with Time Delays.- 6.5 Model Formulation in Caseof a Limited Control Horizon.- 6.6 Mocca Control Formulation.- 6.7 Non-linear Transformations.- 6.8 Practical Implementation Guidelines.- 6.9 Case Study.- 6.10 Control of a Fluidized Catalytic Cracker.- 6.11 Examples of Case Studies in MATLAB.- 6.12 Control of Integrating Processes.- 6.13 Lab Exercises.- 6.14 Use of MCPC for Constrained Multivariable Control.- References.- 7 Internal Model Control.- 7.1 Introduction.- 7.2 Factorization of Multiple Delays.- 7.3 Filter Design.- 7.4 Feed-forward IMC.- 7.5 Example of Controller Design.- 7.6 LQ Optimal Inverse Design.- References.- 8 Nonlinear Multivariable Control.- 8.1 Non-linear Model Predictive Control.- 8.2 Non-linear Quadratic DMC.- 8.3 Generic Model Control.- 8.4 Problem Description.- 8.5 GMC Application to the CSTR System.- 8.6 Discussion of the GMC Algorithm.- 8.7 Simulation of Reactor Control.- 8.8 One Step Reference Trajectory Control.- 8.9 Predictive Horizon Reference Trajectory Control.- References.- 9 Optimization of Process Operation.- 9.1 Introduction to Real-time Optimization.- 9.2 Model Building.- 9.3 The Objective Function.- 9.4 Unconstrained Functions: one Dimensional Problems.- 9.5 Unconstrained Multivariable Optimization.- 9.6 Linear Programming.- 9.7 Non-linear Programming.- References.- 10 Optimization Examples.- 10.1 AMPL: a Multi-purpose Optimizer.- 10.2 Optimization Examples.- References.- 11 Integration of Control and Optimization.- 11.1 Introduction.- 11.2 Description of the Desalination Plant.- 11.3 Production Maximization of Desalination Plant.- 11.4 Linear Model Predictive Control of Desalination Plant.- 11.5 Reactor problem definition.- 11.6 Multivariable Non-linear Control of the Reactor.- References.- Appendix I. MCPC software guide.- I.1 Installation.- I.2 Model identification.- I.2.1 General process information.- I.2.2 Identification data.- I.2.3 Output details.- I.3 Controller design.- I.4 Control simulation.- I.5 Dealing with constraints.- I.6 Saving a project.- Appendix II. Comparison of control strategies for a hollow shaft reactor.- II.1 Introduction.- II.2 Model Equations.- II.3 Proportional Integral Control.- II.4 Linear Multivariable Control.- II.5 Non-linear Multivariable Control.- References.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.