Said / Sharma | Machine Learning for Sustainable Energy Solutions | Buch | 978-1-394-26740-8 | www.sack.de

Buch, Englisch, 304 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 576 g

Said / Sharma

Machine Learning for Sustainable Energy Solutions


1. Auflage 2025
ISBN: 978-1-394-26740-8
Verlag: John Wiley & Sons

Buch, Englisch, 304 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 576 g

ISBN: 978-1-394-26740-8
Verlag: John Wiley & Sons


Comprehensive insights into integrating modern engineering techniques with machine learning and renewable energy to create a more sustainable world

Through an interdisciplinary approach, Machine Learning for Sustainable Energy Solutions provides comprehensive insights into integrating modern engineering techniques such as machine learning (ML), artificial intelligence (AI), nanotechnology, digital twins, and the Internet of Things (IoT) with renewable energy. Each chapter is based on modern research and enhanced by experimental or simulated data.

The book offers a thorough review of several energy storage techniques, helping readers fully grasp the larger background in which chemical, thermal, electrical, mechanical, and machine learning technologies may be used to evaluate, categorize, and maximize different storage systems. The book also reviews the confluence of the Internet of Things (IoT) and machine learning for real-time digestive parameter control and monitoring, along with the cooperative importance of mathematical modeling and artificial intelligence in maximizing reactor performance, gas output, and operational stability.

Machine Learning for Sustainable Energy Solutions includes information on: - Bio-based energy generation from biomass gasification and biohydrogen
- Usage of hybrid approaches, support vector machines, and neural networks to anticipate and maximize bioenergy production from challenging organic feedstocks
- Hydrogen-powered dual-fuel engines, covering response surface methodology (RSM) for multi-attribute optimization
- Scalable, experimentally confirmed ML-based solutions for long-standing problems like sedimentation, pumping losses, and stability of nanofluids
- The growing and important use of nanotechnology in energy systems, particularly in engine emissions management, energy storage, and heat transfer improvements

Machine Learning for Sustainable Energy Solutions is an essential reference for professionals, researchers, educators, and students working in the fields of energy, environmental science, and machine learning. The book also helps decision-makers in various fields by providing them the required knowledge to make informed choices on sustainable practices and policies.

Said / Sharma Machine Learning for Sustainable Energy Solutions jetzt bestellen!

Weitere Infos & Material


List of Contributors xii

Preface xvi

1 Green Energy-Led Sustainable Development: Barriers and Opportunities 1
Arni Gesselle M. Pornea, and Hussein Safwat Hasan Hasan

1.1 Introduction 1

1.2 The Current Landscape of Green Energy 3

1.2.1 Green Energy Types and Technologies 3

1.2.2 Global Green Energy Usage Statistics 3

1.3 Barriers to Green Energy Implementation 4

1.3.1 Economic and Financial Challenges 4

1.3.1.1 High Initial Costs 5

1.3.1.2 Investment Risks 5

1.3.2 Regulatory and Policy Frameworks 5

1.3.3 Social Acceptance and Cultural Factors 6

1.3.4 Technological Barriers 6

1.4 ml and AI in Green Energy 7

1.4.1 Technological Assessment and Optimization 7

1.4.2 Predictive Net-Zero Initiative 8

1.4.3 Enhancing Energy Storage Systems 9

1.4.4 Energy Demand and Supply Forecasting 9

1.4.5 Setting Ambitious Goal 10

1.4.6 Activate Support and Financial Investment 10

1.5 Challenges in the Integration of ML and AI in Renewable Energy 10

1.6 Directive in ML and AI Improvement Toward Its Application 11

1.6.1 Workforce Capacity Increase 12

1.6.2 Large-Scale Project Implementation 12

1.6.3 Public Awareness 12

1.6.4 Continuous Progress Monitoring and Strategies Adjustment 12

1.7 Conclusion 13

References 14

2 Machine Learning-Driven Valorization of Organic Waste for Sustainable Bio-Hydrogen Production 17
Munusamy Arun, Debabrata Barik, and Sreejesh S. R. Chandran

2.1 Introduction 17

2.1.1 Objectives 18

2.2 Literature Review 18

2.3 Proposed Method 19

2.4 Results and Discussion 25

2.4.1 Bio-Hydrogen Production Efficiency Analysis 25

2.4.2 Performance Analysis 25

2.4.3 Adaptability Analysis 27

2.5 Conclusion 28

Author Contributions 29

Acknowledgment 29

Data Availability Statement 29

Funding Statement 29

Conflict of Interest 29

References 30

3 Application of Neural Networks for Model Prediction of Combustion and Emissions in Diesel Engines 33
Parampreet Singh Jassal, Sridhar Sahoo, and Neeraj Kumbhakarna

3.1 Introduction 34

3.2 Artificial Neural Networks 35

3.2.1 Types of Artificial Neural Networks 37

3.3 AI and ANN in Internal Combustion Engines 39

3.4 ANN in Diesel Engines 40

3.4.1 ANN for Different Fuel Properties 41

3.4.2 ANN for Diesel Engine Performance 41

3.4.3 ANN for Diesel Engines Using Biodiesel Blends 43

3.4.4 ANN for Gaseous Fuels 47

3.4.4.1 MISO Model Studies 48

3.4.4.2 MIMO Model Studies 48

3.4.4.3 Comparative Studies 48

3.4.5 ANN for HCCI Engines 50

3.5 Conclusions 52

References 53

4 Enhanced Energy Storage with Hybrid Nanoparticles and Machine Learning for Energy Sustainability 59
Arun Munusamy, Debabrata Barik, and Sreejesh S.R. Chandran

4.1 Introduction 59

4.2 Materials and Methods 61

4.3 Result and Discussion 67

4.4 Conclusion 69

Author Contributions 70

Acknowledgment 70

Data Availability Statement 70

Funding 70

Conflict of Interest 70

References 71

5 Model Prediction of Biomass Gasification Using Support Vector Machines 73
Arun Munusamy and Debabrata Barik

5.1 Introduction and Literature Survey 73

5.2 Materials and Methods 76

5.3 Results and Discussion 83

5.4 Conclusion 89

References 90

6 Role of Machine Learning Techniques in Modeling and Optimization of Biomass Gasification Parameters in a Downdraft Gasifier 93
Vikas Attri and Avdhesh Kr. Sharma

6.1 Introduction 93

6.2 Biomass Gasification 94

6.2.1 Gasification Process 95

6.2.2 Gasification Parameters 97

6.2.2.1 Biomass Characterization 98

6.2.2.2 Equivalence Ratio 98

6.2.2.3 Gasification Temperature 99

6.2.2.4 Biomass Consumption Rate 99

6.2.2.5 Cold Gas Efficiency (CGE) 99

6.2.2.6 Importance of Various Gasifying Agents in the Gasification Process 99

6.2.2.7 Effect of the Gasification Parameters on the Producer Gas 100

6.3 Machine Learning Techniques in Biomass Gasification 100

6.3.1 Gaussian Process Regression 101

6.3.2 Support Vector Machines 101

6.3.3 Artificial Neural Network 103

6.3.4 Decision Trees 105

6.4 Model Performance Metrics 105

6.5 Application of the ML Model in Biomass Gasification 106

6.6 Challenges and Prospects 107

6.7 Conclusion 108

References 109

7 Response Surface Methodology-Based Multiattribute Optimization of a Hydrogen-Powered Dual-Fuel Engines 115
Sanjeev Kumar, Prabhu Paramasivam, and Abdul Razak

7.1 Introduction 115

7.2 Materials and Methods 118

7.2.1 Test Engine Setup and Fuel 118

7.2.2 Analysis of Variance 119

7.2.3 Response Surface Methodology 120

7.3 Results and Discussion 121

7.3.1 Correlation Analysis 121

7.3.2 Analysis of Variance 121

7.3.3 Surface Diagrams and Predictions 126

7.3.4 Parametric Optimization 134

7.4 Conclusion 135

References 135

8 Addition of Nanoparticles to Biodiesel–Diesel Blends to Improve Engine Efficiency and Reduce Tailpipe Emission 139
Mudasar Zafar, Abida Hussain, Tauseef Ahmed, Ahmed Daabo, and Farman Ullah

8.1 Introduction 139

8.2 Background and Performance of Biodiesel Blends in Engine Efficiency 141

8.2.1 Properties of the Biodiesel 142

8.2.2 Performance 144

8.2.3 Performance of Biodiesel Blends in Emission Characteristics 145

8.3 Mechanisms of Nanoparticles in Combustion Improvement 147

8.4 Biodiesel–Diesel Blends Nanoparticle Method 148

8.4.1 Limitations 150

8.4.2 Future Work 151

8.5 Conclusion 151

Author Contributions 152

Statement of Interest 152

Acknowledgment 152

References 152

9 Hybrid Nanoparticles to Improve Solar-Based Energy Storage 161
Pethurajan Vigneshwaran, Abin Roy, B.S. Bibin, and Saboor Shaik

9.1 Introduction 161

9.2 Thermal Energy Storage Systems 162

9.2.1 Sensible Heat Storage 163

9.2.2 Latent Heat Storage (LHS) 164

9.2.2.1 Phase Change Material (PCM) 165

9.2.3 Thermochemical Energy Storage 166

9.3 Solar Energy Storage Systems 166

9.3.1 TES for Solar Energy Storage Systems 166

9.3.2 Latent Heat TES in Solar Energy Storage Systems 168

9.4 Role of Nanotechnology in Solar Energy Storage 169

9.4.1 Types of Nanoparticles 169

9.4.2 Nanoparticles in Thermal Energy Storage 170

9.4.2.1 Inorganic-Based Nanomaterials 172

9.4.2.2 Carbon-Based Nanomaterials 172

9.4.2.3 Hybrid Nanomaterials 172

9.5 Applications of Nanoparticles in Solar Energy Storage 173

9.5.1 Solar Collectors 173

9.5.2 Solar Thermal Energy Conversion 174

9.5.3 Solar Photovoltaic System 175

9.5.4 Solar Heater 175

9.5.5 Solar Desalination 176

9.5.6 Other Applications 176

9.6 Conclusions and Future Recommendations 176

References 178

10 Application of Artificial Intelligence to Model-Predict the Thermo-physical Property of Hybrid Nanofluids 185
Prabhakar Sharma, Sanjeev Kumar, and Zafar Said

10.1 Introduction 185

10.2 Materials and Methods 188

10.2.1 Synthesis 188

10.2.2 Machine Learning 188

10.2.2.1 Linear Regression 189

10.2.2.2 Tweedie Regression 189

10.2.2.3 Huber Regression 189

10.2.2.4 Extreme Gradient Boosting 190

10.3 Results and Discussion 191

10.3.1 Data Analysis and Correlation 191

10.3.2 Linear Regression Model 193

10.3.3 Huber Regression Model 195

10.3.4 Tweedie Regression Model 195

10.3.5 XGBoost Model 198

10.3.6 Model Comparison 200

10.4 Conclusion 202

References 202

11 Optimization of Nanofluids for Heat Exchangers: Dealing with Sedimentation and Pump Losses 209
Nikhil S. Mane, Sayantan Mukherjee, Redhwan Almuzaiqer, and Niteen Bhirud

11.1 Introduction 209

11.2 Sedimentation 211

11.3 Pump Losses 216

11.4 Thermo-Economic Aspect of the Nanofluids 217

11.5 Conclusion 219

References 221

12 Clean Combustion with Biogas and Nano-Biodiesel in CI Engines 225
S. Lalhriatpuia, Md. Gulam Mustafa, and Lalhmingsanga Hauchhum

12.1 Introduction 225

12.2 Materials and Methods 228

12.2.1 Engine Specifications 228

12.2.2 Experimental Design 228

12.2.3 Fuel Properties 230

12.3 Modeling and Optimization 231

12.3.1 RSM Modeling 231

12.3.2 ANN Modeling 232

12.3.3 Optimization of RSM and ANN model 233

12.4 Results and Discussion 236

12.4.1 RSM Model Analysis 236

12.4.2 ANN Model Analysis 240

12.4.3 Optimization of RSM and ANN Model 241

12.5 Conclusions 243

References 244

13 A Differentiation of Energy Storage Methods 247
H. Bahuruteen Ali Ahamadu, K Arun, S Arivazhagan, N Sendhil Kumar, S. Kaliappan, and M. D. Rajkamal

13.1 Introduction 247

13.1.1 Conventional Energy Storage 248

13.1.2 Mechanical Energy Storage 248

13.1.3 Electrical Energy Storage 249

13.1.4 Electrochemical Energy Storage 249

13.1.5 Thermal Energy Storage 250

13.1.6 Characteristics of Thermal Energy Storage 250

13.1.7 Sensible Heat Storage 251

13.1.8 Aquifer Thermal Energy Storage 252

13.1.9 Hot Water Energy Storage 253

13.1.10 Cavern Energy Storage 254

13.1.11 Gravel Energy Storage 254

13.1.12 Molten Salt Energy Storage 255

13.1.13 Borehole Energy Storage 255

13.1.14 Packed-Bed Energy Storage 255

13.1.15 Latent Heat Storage 256

13.1.15.1 Latent Heat Energy Storage by Phase Change Material 256

13.1.15.2 Encapsulation of PCM 257

13.1.15.3 Latent Heat Energy Storage by Salt Hydrates 257

13.1.16 Thermochemical Energy Storage 258

13.2 Artificial Intelligence (AI) 258

13.2.1 AI in Energy Sector 258

13.2.1.1 Artificial Neural Network (ANN) 259

13.2.1.2 Fuzzy Logic (FL) 259

13.2.1.3 Adaptive Neuro Fuzzy Inference System (ANFIS) 259

13.2.1.4 Particle Swarm Optimization (PSO) 260

13.2.1.5 Support Vector Machine (SVM) 260

13.2.1.6 Implementation of AI in Energy Storage 260

13.3 Conclusion 260

References 262

14 Application of IoT and Machine Learning to Improve Biogas Production Through Anaerobic Digestion 267
Akshay Jain and Bhaskor Jyoti Bora

14.1 Introduction 268

14.2 Biogas Production 268

14.3 Techniques for Biogas Production Enhancement 269

14.4 Literature Review 270

14.5 Implementation of Mathematical Techniques for Biogas Production Enhancement 273

14.6 Conclusion 275

References 276

Index 281


Zafar Said, PhD, is a Mechanical and Aerospace Engineering Associate Professor at UAE University. With over AED six million in research funding, he has led industry-focused projects with SEWA, Tabreed, and Masdar, advancing innovations in nanofluids, solar energy, AI, and low-carbon fuels.

Prabhakar Sharma, PhD, is an assistant professor at Delhi Skill and Entrepreneurship University, Delhi, India. He has 30 years of combined experience in academia and industry.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.