Sanchez | Time Series for Data Scientists | Buch | 978-1-108-83777-4 | sack.de

Buch, Englisch, 550 Seiten, Format (B × H): 176 mm x 248 mm, Gewicht: 1018 g

Sanchez

Time Series for Data Scientists

Data Management, Description, Modeling and Forecasting
Erscheinungsjahr 2023
ISBN: 978-1-108-83777-4
Verlag: Cambridge University Press

Data Management, Description, Modeling and Forecasting

Buch, Englisch, 550 Seiten, Format (B × H): 176 mm x 248 mm, Gewicht: 1018 g

ISBN: 978-1-108-83777-4
Verlag: Cambridge University Press


Learn by doing with this user-friendly introduction to time series data analysis in R. This book explores the intricacies of managing and cleaning time series data of different sizes, scales and granularity, data preparation for analysis and visualization, and different approaches to classical and machine learning time series modeling and forecasting. A range of pedagogical features support students, including end-of-chapter exercises, problems, quizzes and case studies. The case studies are designed to stretch the learner, introducing larger data sets, enhanced data management skills, and R packages and functions appropriate for real-world data analysis. On top of providing commented R programs and data sets, the book's companion website offers extra case studies, lecture slides, videos and exercise solutions. Accessible to those with a basic background in statistics and probability, this is an ideal hands-on text for undergraduate and graduate students, as well as researchers in data-rich disciplines

Sanchez Time Series for Data Scientists jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Part I. Descriptive Features of Time Series Data: 1. Introduction to time series data; 2. Smoothing and decomposing a time series; 3. Summary statistics of stationary time series; Part II. Univariate Models of Temporal Dependence: 4. The algebra of differencing and backshifting; 5. Stationary stochastic processes; 6. ARIMA(p,d,q)(P,D,Q)$_F$ modeling and forecasting; Part III. Multivariate Modeling and Forecasting: 7. Latent process models for time series; 8. Vector autoregression; 9. Classical regression with ARMA residuals; 10. Machine learning methods for time series; References; Index.


Sanchez, Juana
Juana Sanchez is Senior Lecturer in Statistics at the University of California, Los Angeles. She is Editor of the Datasets and Stories section of the ASA's Journal of Statistics and Data Science Education and is the author of Probability for Data Scientists (2020).



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.