Buch, Englisch, Band 31, 367 Seiten, Format (B × H): 175 mm x 246 mm, Gewicht: 822 g
A Computational Approach
Buch, Englisch, Band 31, 367 Seiten, Format (B × H): 175 mm x 246 mm, Gewicht: 822 g
Reihe: De Gruyter Studies in Mathematics
ISBN: 978-3-11-016808-2
Verlag: De Gruyter
The series de Gruyter Studies in Mathematics was founded ca. 35 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel.
The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist.
The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level.
Editor-in-Chief
Guozhen Lu, University of Connecticut, USA
Editorial Board
Carstensen Carsten, Humboldt-Universitat zu Berlin, Germany
Gavril Farkas, Humboldt-Universitat zu Berlin, Germany
Nicola Fusco, Università di Napoli "Federico II", Italy
Fritz Gesztesy, Baylor University, USA
Zenghu Li, Beijing Normal University, China
Karl-Hermann Neeb, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
René L. Schilling, Technische Universität Dresden, Germany
Volkmar Welker, Philipps-Universität Marburg, Germany
Please submit book proposals to Guozhen Lu
Zielgruppe
Researchers and Graduate Students in Mathematics or Computer Sciences; Academic Libraries
Fachgebiete
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Informationstheorie, Kodierungstheorie
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Informationstheorie, Kodierungstheorie
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Kryptologie, Informationssicherheit
Weitere Infos & Material
Frontmatter
Contents
Chapter 1. Elliptic curves
Chapter 2. Elliptic curves over the complex numbers
Chapter 3. Elliptic curves over finite fields
Chapter 4. Elliptic curves over local fields
Chapter 5. The Mordell-Weil theorem and heights
Chapter 6. Torsion group
Chapter 7. The rank
Chapter 8. Basis
Chapter 9. S-integral points
Appendix A. Algorithmic theory of diophantine equations
Appendix B. Multiquadratic number fields
Backmatter




