Buch, Englisch, 208 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 341 g
Random Generators in Computer Science
Buch, Englisch, 208 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 341 g
ISBN: 978-1-4419-5150-2
Verlag: Springer
Random Generation of Trees is about a field on the crossroads between computer science, combinatorics and probability theory. Computer scientists need random generators for performance analysis, simulation, image synthesis, etc. In this context random generation of trees is of particular interest. The algorithms presented here are efficient and easy to code. Some aspects of Horton--Strahler numbers, programs written in C and pictures are presented in the appendices. The complexity analysis is done rigorously both in the worst and average cases.
Random Generation of Trees is intended for students in computer science and applied mathematics as well as researchers interested in random generation.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Mathematik | Informatik EDV | Informatik Informatik Mathematik für Informatiker
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Algorithmen & Datenstrukturen
- Mathematik | Informatik EDV | Informatik Informatik Logik, formale Sprachen, Automaten
- Mathematik | Informatik Mathematik Algebra Elementare Algebra
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
Weitere Infos & Material
1 Introduction.- 2 Notations.- 3 Generation of Simple Kinds of Trees.- 4 Generation Using Bijective Methods.- 5 Generation of Forests of Trees Split into Patterns.- 6 Generation of Colored Trees.- 7 Two Methods of Generation by Rejection.- 8 Arborescences.- 9 Generation of Trees with a Given Height and Some Tricks about Complexity.- 10 A Parallel Algorithm for the Generation of Words.- Appendix 1 Horton-Strahler’s Numbers.- Appendix 2 Algorithms.- 2.1 Generation of binary trees: Rimy’s algorithm.- 2.2 Generation of unary-binary trees: Samaj Lareida’s algorithm.- Appendix 3 Pictures of Trees.- References.




