Schwermer | Reduction Theory and Arithmetic Groups | Buch | 978-1-108-83203-8 | sack.de

Buch, Englisch, Band 45, 374 Seiten, Format (B × H): 175 mm x 250 mm, Gewicht: 827 g

Reihe: New Mathematical Monographs

Schwermer

Reduction Theory and Arithmetic Groups


Erscheinungsjahr 2022
ISBN: 978-1-108-83203-8
Verlag: Cambridge University Press

Buch, Englisch, Band 45, 374 Seiten, Format (B × H): 175 mm x 250 mm, Gewicht: 827 g

Reihe: New Mathematical Monographs

ISBN: 978-1-108-83203-8
Verlag: Cambridge University Press


Arithmetic groups are generalisations, to the setting of algebraic groups over a global field, of the subgroups of finite index in the general linear group with entries in the ring of integers of an algebraic number field. They are rich, diverse structures and they arise in many areas of study. This text enables you to build a solid, rigorous foundation in the subject. It first develops essential geometric and number theoretical components to the investigations of arithmetic groups, and then examines a number of different themes, including reduction theory, (semi)-stable lattices, arithmetic groups in forms of the special linear group, unipotent groups and tori, and reduction theory for adelic coset spaces. Also included is a thorough treatment of the construction of geometric cycles in arithmetically defined locally symmetric spaces, and some associated cohomological questions. Written by a renowned expert, this book is a valuable reference for researchers and graduate students.

Schwermer Reduction Theory and Arithmetic Groups jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Part I. Arithmetic Groups in the General Linear Group: 1. Modules, lattices, and orders; 2. The general linear group over rings; 3. A menagerie of examples – a historical perspective; 4. Arithmetic groups; 5. Arithmetically defined Kleinian groups and hyperbolic 3-space; Part II. Arithmetic Groups Over Global Fields: 6. Lattices – Reduction theory for GLn; 7. Reduction theory and (semi)-stable lattices; 8. Arithmetic groups in algebraic k-groups; 9. Arithmetic groups, ambient Lie groups, and related geometric objects; 10. Geometric cycles; 11. Geometric cycles via rational automorphisms; 12. Reduction theory for adelic coset spaces; Appendices: A. Linear algebraic groups – a review; B. Global fields; C. Topological groups, homogeneous spaces, and proper actions; References; Index.


Schwermer, Joachim
Joachim Schwermer is Emeritus Professor of Mathematics at the University of Vienna, and recently Guest Researcher at the Max-Planck-Institute for Mathematics, Bonn. He was Director of the Erwin-Schrödinger-Institute for Mathematics and Physics, Vienna from 2011 to 2016. His research focuses on questions arising in the arithmetic of algebraic groups and the theory of automorphic forms.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.