Snijders / Bosker | Multilevel Analysis | Buch | 978-1-84920-200-8 | www.sack.de

Buch, Englisch, 368 Seiten, Format (B × H): 175 mm x 250 mm, Gewicht: 814 g

Snijders / Bosker

Multilevel Analysis

An Introduction to Basic and Advanced Multilevel Modeling
2. Auflage 2011
ISBN: 978-1-84920-200-8
Verlag: SAGE Publications Ltd

An Introduction to Basic and Advanced Multilevel Modeling

Buch, Englisch, 368 Seiten, Format (B × H): 175 mm x 250 mm, Gewicht: 814 g

ISBN: 978-1-84920-200-8
Verlag: SAGE Publications Ltd


The Second Edition of this classic text introduces the main methods, techniques and issues involved in carrying out multilevel modeling and analysis.

Snijders and Bosker's book is an applied, authoritative and accessible introduction to the topic, providing readers with a clear conceptual and practical understanding of all the main issues involved in designing multilevel studies and conducting multilevel analysis.

This book provides step-by-step coverage of:

• multilevel theories

• ecological fallacies

• the hierarchical linear model

• testing and model specification

• heteroscedasticity

• study designs

• longitudinal data

• multivariate multilevel models

• discrete dependent variables

There are also new chapters on:

• missing data

• multilevel modeling and survey weights

• Bayesian and MCMC estimation and latent-class models.

This book has been comprehensively revised and updated since the last edition, and now discusses modeling using HLM, MLwiN, SAS, Stata including GLLAMM, R, SPSS, Mplus, WinBugs, Latent Gold, and SuperMix.

This is a must-have text for any student, teacher or researcher with an interest in conducting or understanding multilevel analysis.

Tom A.B. Snijders is Professor of Statistics in the Social Sciences at the University of Oxford and Professor of Statistics and Methodology at the University of Groningen.

Roel J. Bosker is Professor of Education and Director of GION, Groningen Institute for Educational Research, at the University of Groningen.

Snijders / Bosker Multilevel Analysis jetzt bestellen!

Weitere Infos & Material


Preface second edition
Preface to first edition
Introduction
Multilevel analysis
Probability models
This book
Prerequisites
Notation
Multilevel Theories, Multi-Stage Sampling and Multilevel Models
Dependence as a nuisance

Dependence as an interesting phenomenon

Macro-level, micro-level, and cross-level relations

Glommary
Statistical Treatment of Clustered Data
Aggregation

Disaggregation

The intraclass correlation
Within-group and between group variance

Testing for group differences

Design effects in two-stage samples

Reliability of aggregated variables

Within-and between group relations

Regressions

Correlations

Estimation of within-and between-group correlations

Combination of within-group evidence

Glommary
The Random Intercept Model
Terminology and notation

A regression model: fixed effects only
Variable intercepts: fixed or random parameters?
When to use random coefficient models

Definition of the random intercept model

More explanatory variables

Within-and between-group regressions

Parameter estimation

'Estimating' random group effects: posterior means
Posterior confidence intervals

Three-level random intercept models

Glommary
The Hierarchical Linear Model

Random slopes
Heteroscedasticity
Do not force ?01 to be 0!

Interpretation of random slope variances
Explanation of random intercepts and slopes
Cross-level interaction effects

A general formulation of fixed and random parts

Specification of random slope models
Centering variables with random slopes?

Estimation

Three or more levels

Glommary
Testing and Model Specification
Tests for fixed parameters
Multiparameter tests for fixed effects

Deviance tests

More powerful tests for variance parameters

Other tests for parameters in the random part

Confidence intervals for parameters in the random part

Model specification

Working upward from level one

Joint consideration of level-one and level-two variables

Concluding remarks on model specification

Glommary
How Much Does the Model Explain?
Explained variance
Negative values of R2?

Definition of the proportion of explained variance in two-level models

Explained variance in three-level models

Explained variance in models with random slopes
Components of variance
Random intercept models
Random slope models
Glommary
Heteroscedasticity
Heteroscedasticity at level one

Linear variance functions
Quadratic variance functions
Heteroscedasticity at level two
Glommary
Missing Data
General issues for missing data

Implications for design
Missing values of the dependent variable
Full maximum likelihood

Imputation

The imputation method

Putting together the multiple results

Multiple imputations by chained equations

Choice of the imputation model

Glommary
Assumptions of the Hierarchical Linear Model
Assumptions of the hierarchical linear model

Following the logic of the hierarchical linear model

Include contextual effects

Check whether variables have random effects

Explained variance

Specification of the fixed part

Specification of the random part

Testing for heteroscedasticity

What to do in case of heteroscedasticity

Inspection of level-one residuals

Residuals at level two

Influence of level-two units

More general distributional assumptions

Glommary
Designing Multilevel Studies
Some introductory notes on power
Estimating a population mean
Measurement of subjects

Estimating association between variables

Cross-level interaction effects

Allocating treatment to groups or individuals
Exploring the variance structure
The intraclass correlation
Variance parameters
Glommary
Other Methods and Models
Bayesian inference

Sandwich estimators for standard errors

Latent class models
Glommary
Imperfect Hierarchies
A two-level model with a crossed random factor

Crossed random effects in three-level models

Multiple membership models

Multiple membership multiple classification models
Glommary
Survey Weights
Model-based and design-based inference
Descriptive and analytic use of surveys
Two kinds of weights

Choosing between model-based and design-based analysis

Inclusion probabilities and two-level weights

Exploring the informativeness of the sampling design
Example: Metacognitive strategies as measured in the PISA study
Sampling design
Model-based analysis of data divided into parts

Inclusion of weights in the model

How to assign weights in multilevel models

Appendix. Matrix expressions for the single-level estimators
Glommary
Longitudinal Data
Fixed occasions
The compound symmetry models

Random slopes
The fully multivariate model
Multivariate regression analysis

Explained variance
Variable occasion designs

Populations of curves

Random functions
Explaining the functions 27415.2.4
Changing covariates

Autocorrelated residuals
Glommary
Multivariate Multilevel Models
Why analyze multiple dependent variables simultaneously?

The multivariate random intercept model

Multivariate random slope models

Glommary
Discrete Dependent Variables
Hierarchical generalized linear models

Introduction to multilevel logistic regression

Heterogeneous proportions

The logit function: Log-odds

The empty model

The random intercept model

Estimation

Aggregation

Further topics on multilevel logistic regression

Random slope model

Representation as a threshold model

Residual intraclass correlation coefficient

Explained variance

Consequences of adding effects to the model

Ordered categorical variables

Multilevel event history analysis

Multilevel Poisson regression
Glommary
Software

Special software for multilevel modeling
HLM
MLwiN
The MIXOR suite and SuperMix
Modules in general-purpose software packages
SAS procedures VARCOMP, MIXED, GLIMMIX, and NLMIXED
R
Stata
SPSS, commands VARCOMP and MIXED
Other multilevel software
PinT
Optimal Design
MLPowSim
Mplus
Latent Gold
REALCOM
WinBUGS
References
Index



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.