Buch, Englisch, 143 Seiten, Format (B × H): 173 mm x 246 mm, Gewicht: 479 g
Buch, Englisch, 143 Seiten, Format (B × H): 173 mm x 246 mm, Gewicht: 479 g
Reihe: Synthesis Lectures on Mathematics & Statistics
ISBN: 978-3-032-00909-8
Verlag: Springer
This book presents in-depth explanations of well-known and recognized behaviors of neural networks in machine learning. In addition, the author provides novel technical analyses of behaviors of discrete-time dynamical systems modeled as difference equations. These analyses and their outcomes are closely related to models of very well-known neural networks such as Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) neural networks, which are widely used in machine learning and artificial intelligence (AI) applications. The author also discusses difference equations and their relevance to neural networks, machine learning, and AI.
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
Weitere Infos & Material
Introduction.- Linear Difference Equations.- Nonlinear Difference Equations.- Stability and Chaotic Behaviors of Difference Equations.- Control of Difference Equations.- Applications to Neural Networks and Machine Learning.- Conclusions.




