Buch, Englisch, 476 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 821 g
Buch, Englisch, 476 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 821 g
ISBN: 978-1-032-19357-1
Verlag: Taylor & Francis Ltd (Sales)
This book provides a detailed description of machine learning algorithms in data analytics, data science life cycle, Python for machine learning, linear regression, logistic regression, and so forth. It addresses the concepts of machine learning in a practical sense providing complete code and implementation for real-world examples in electrical, oil and gas, e-commerce, and hi-tech industries. The focus is on Python programming for machine learning and patterns involved in decision science for handling data.
Features:
- Explains the basic concepts of Python and its role in machine learning.
- Provides comprehensive coverage of feature engineering including real-time case studies.
- Perceives the structural patterns with reference to data science and statistics and analytics.
- Includes machine learning-based structured exercises.
- Appreciates different algorithmic concepts of machine learning including unsupervised, supervised, and reinforcement learning.
This book is aimed at researchers, professionals, and graduate students in data science, machine learning, computer science, and electrical and computer engineering.
Zielgruppe
Academic
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Programmier- und Skriptsprachen
- Mathematik | Informatik Mathematik Mathematik Allgemein
- Technische Wissenschaften Energietechnik | Elektrotechnik Elektrotechnik
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Mining
Weitere Infos & Material
1. Introduction 2. Overview of Python for Machine Learning 3. Data Analytics Life Cycle for Machine Learning 4. Unsupervised Learning 5. Supervised Learning: Regression 6. Supervised Learning: Classification 7. Feature Engineering 8. Reinforcement Learning 9. Case Studies for Decision Sciences Using Python