Buch, Englisch, 170 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 448 g
Reihe: Springer Theses
Buch, Englisch, 170 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 448 g
Reihe: Springer Theses
ISBN: 978-3-031-43582-9
Verlag: Springer Nature Switzerland
This thesis presents significant advances in the use of neural networks to study the properties of neutrinos. Machine learning tools like neural networks (NN) can be used to identify the particle types or determine their energies in detectors such as those used in the NOvA neutrino experiment, which studies changes in a beam of neutrinos as it propagates approximately 800 km through the earth. NOvA relies heavily on simulations of the physics processes and the detector response; these simulations work well, but do not match the real experiment perfectly. Thus, neural networks trained on simulated datasets must include systematic uncertainties that account for possible imperfections in the simulation. This thesis presents the first application in HEP of adversarial domain generalization to a regression neural network. Applying domain generalization to problems with large systematic variations will reduce the impact of uncertainties while avoiding the risk of falsely constraining the phase space. Reducing the impact of systematic uncertainties makes NOvA analysis more robust, and improves the significance of experimental results.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Technik Allgemein Mess- und Automatisierungstechnik
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Naturwissenschaften Physik Quantenphysik Hochenergiephysik
- Naturwissenschaften Physik Quantenphysik Kernphysik
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
Weitere Infos & Material
Chapter 1 Neutrinos: A Desperate Remedy
Chapter 2 A Review of Neutrino Physics
Chapter 3 The NOvA Experiment
Chapter 4 Event Reconstruction
Chapter 5 The 3-Flavor Analysis
Chapter 6 A Long Short-Term Memory Neural Network
Chapter 7 Domain Generalization by Adversarial Training
Chapter 8 Conclusion
Appendix A Notation
Appendix B Electroweak Unification
Appendix C 3 Flavor Oscillations with Wave Packets
Appendix D Neutrinos From Pions
Appendix E Gradient Reversal Layer Implementation
Appendix F The Test Beam




