• Neu
Torra / Narukawa / Domingo-Ferrer | Modeling Decisions for Artificial Intelligence | Buch | 978-3-032-00890-9 | sack.de

Buch, Englisch, 386 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 604 g

Reihe: Lecture Notes in Computer Science

Torra / Narukawa / Domingo-Ferrer

Modeling Decisions for Artificial Intelligence

22nd International Conference, MDAI 2025, València, Spain, September 15-18, 2025, Proceedings
Erscheinungsjahr 2025
ISBN: 978-3-032-00890-9
Verlag: Springer

22nd International Conference, MDAI 2025, València, Spain, September 15-18, 2025, Proceedings

Buch, Englisch, 386 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 604 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-032-00890-9
Verlag: Springer


This book constitutes the refereed proceedings of the 22nd International Conference on Modeling Decisions for Artificial Intelligence, MDAI 2025, held in Valencia, Spain, during September 15-18, 2025.
The 28 full papers were carefully reviewed and selected from 58 submissions. They are organized in topical sections as follows: Decision making and uncertainty; Data privacy; Machine learning and Data science.

Torra / Narukawa / Domingo-Ferrer Modeling Decisions for Artificial Intelligence jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


.- Decision making and uncertainty.

.- Measurable Closure of a Finitely-Additive Measure Space: An Analysis of Spaces
Similar to Stone Spaces.

.- Ecological Inference for Electoral Analysis: A Computational Perspective on
Human Decision-Making.

.- Dimensionality reduction with entropies from f-divergences.

.- ChessFormer - Modeling human decision making in chess.

.- Simulating Electoral Behavior.

.- Multi-criteria Assessment of Clustering Procedures in E-Commerce.

.- Automated Decision-Making via Reinforcement Learning from Demonstrations.

.- Decision Analysis with the Hurwicz Decision Map under a Set of Interval Pri-
ority Weight Vectors.

.- An Investigation of Alternative Methods for the Inference of Probabilistic-Fuzzy
Systems.

.- Triangular Fuzzy Rescaling Distance.

.- Data privacy.

.- The differentially private d-Choquet integral: an extension of differentially pri-
vate Choquet integrals.

.- Defenses Against Membership Inference Attacks on Unlearned Data.

.- Differential Private Risk Factors Analysis of Polypharmacy.

.- Towards Lightning Network Channel Randomization.

.- Assessing Privacy Requirements for Controlled Query Evaluation in OBDA.

.- Machine learning.

.- On Sharma-Mittal divergence-regularized Fuzzy c-Means Clustering and its
Alternative.

.- Probabilistic-Fuzzy Inference with Piecewise Linear Quantile Regression.

.- Positive Unlabeled Classification Methods with Logistic Regression Revisited:
An Evaluation of Optimization Techniques.

.- Kacper Paczutkowski, Konrad Furma´nczyk Comparing Transformer Models for Stock Selection in Quantitative Trading.

.- Data science.

.- Decision Rules for Replicating the Visual Learning of the Blackboard in Digital
Presentations.

.- Dual Focus: Transforming Negatives into Knowledge.

.- Testing monotonicity of similarity functions based on embeddings.

.- Hybrid Transformer-ANFIS Architecture for Sentiment Analysis.

.- Comparing Qualitative Object Descriptors using a Visual Similarity Measure.

.- Improving Machine Understanding of Czech Medical Text Using Self-Supervised
and Rule-Based Data Augmentation.

.- Refining Community Detection in Social Networks: Agglomerative and Divisive
Methods with Size Constraints.

.- Comparing Graph Neural Networks for Single and Multi-Layer Brain Connec-
tivity Analysis in Multiple Sclerosis.

.- Enhancing Ultra-Low-Bit Quantization of Large Language Models Through
Saliency-Aware Partial Retraining.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.