Buch, Englisch, 1454 Seiten, mit 1 DVD, Format (B × H): 183 mm x 260 mm, Gewicht: 3194 g
ISBN: 978-0-387-95020-4
Verlag: Springer
Provides reader with working knowledge of Mathematica and key aspects of Mathematica symbolic capabilities, the real heart of Mathematica and the ingredient of the Mathematica software system that makes it so unique and powerful
Clear organization, complete topic coverage, and an accessible writing style for both novices and experts
Website for book with additional materials: http://www/MathematicaGuideBooks.org
Accompanying DVD containing all materials as an electronic book with complete, executable Mathematica 5.1 compatible code and programs, rendered color graphics, and animations
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Technik Allgemein Computeranwendungen in der Technik
- Mathematik | Informatik EDV | Informatik Business Application Mathematische & Statistische Software
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Numerische Mathematik
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Computeranwendungen in der Mathematik
- Mathematik | Informatik EDV | Informatik Informatik
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Computeranwendungen in Wissenschaft & Technologie
- Mathematik | Informatik EDV | Informatik Professionelle Anwendung Computer-Aided Design (CAD)
Weitere Infos & Material
Introduction and Orientation
I. Symbolic computations: *Remarks *Manipulation of polynomials *Manipulations of rational functions of polynomials *Manipulations of trigonometric expressions *Systems of linear and nonlinear equations *Classical analysis *Differential equations *Integral transforms and generalized functions *Three applications *Overview
II Classical orthogonal polynomials: *Remarks *General properties of orthogonal polynomials *Hermite polynomials *Jacobi polynomials *Gegenbauer polynomials *Laguerre polynomials *Legendre polynomials *Chebyshev polynomials T *Chebyshev polynomials U *Relationships among the orthogonal polynomials *Overview
III Classical special functions: *Remarks/Introduction *Gamma, beta, and polygamma functions *Error functions and Fresnel integrals *Sine, cosine, exponential, and logarithmic integral functions *Bessel and airy functions *Legendre functions *Hypergeometric functions *Elliptic integrals *Elliptic functions *ProductLog function *Mathieu functions * Additional special functions *Solution of quintics with hypergeometric functions *Overview
Index




