Uryasev | Probabilistic Constrained Optimization | Buch | sack.de

Uryasev Probabilistic Constrained Optimization



Methodology and Applications

1. Auflage. Softcover version of original hardcover Auflage 2001, Band: 49, 308 Seiten, Kartoniert, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 487 g Reihe: Nonconvex Optimization and Its Applications
ISBN: 978-1-4419-4840-3
Verlag: Springer US


Uryasev Probabilistic Constrained Optimization

Probabilistic and percentile/quantile functions play an important role in several applications, such as finance (Value-at-Risk), nuclear safety, and the environment. Recently, significant advances have been made in sensitivity analysis and optimization of probabilistic functions, which is the basis for construction of new efficient approaches. This book presents the state of the art in the theory of optimization of probabilistic functions and several engineering and finance applications, including material flow systems, production planning, Value-at-Risk, asset and liability management, and optimal trading strategies for financial derivatives (options).
Audience: The book is a valuable source of information for faculty, students, researchers, and practitioners in financial engineering, operation research, optimization, computer science, and related areas.

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Preface. Introduction to the Theory of Probabilistic Functions and Percentiles; S. Uryasev. Pricing American Options by Simulation Using a Stochastic Mesh with Optimized Weights; M. Broadie, et al. On Optimization of Unreliable Material Flow Systems; Y. Ermoliev, et al. Stochastic Optimization in Asset & Liability Management: A Model for Non-Maturing Accounts; K. Frauendorfer, M. Schürle. Optimization in the Space of Distribution Functions and Applications in the Bayes Analysis; A.N. Golodnikov, et al. Sensitivity Analysis of Worst-Case Distribution for Probability Optimization Problems; Y.S. Kan, A.I. Kibzun. On Maximum Realiability Problem in Parallel-Series Systems with Two Failure Modes; V. Kirilyuk. Robust Monte Carlo Simulation for Approximate Covariance Matrices and VaR Analyses; A. Kreinin, A. Levin. Structure of Optimal Stopping Strategies for American Type Options; A.G. Kukush, D.S. Silvestrov. Approximation of Value-at-Risk Problems with Decision Rules; R. Lepp. Managing Risk with Expected Shortfall; H. Mausser, D. Rosen. On the Numerical Solution of Jointly Chance Constrained Problems; J. Mayer. Management of Quality of Service through Chance-constraints in Multimedia Networks; E.A. Medova, J.E. Scott. Solution of a Product Substitution Problem Using Stochastic Programming; M.R. Murr, A. Prékopa. Some Remarks on the Value-at-Risk and the Conditional Value-at-risk; G.Ch. Pflug. Statistical Inference of Stochastic Optimization Problems; A. Shapiro.


Ihre Fragen, Wünsche oder Anmerkungen

Ihre Nachricht*
Wie möchten Sie kontaktiert werden?
Anrede*
Titel
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Firma
Telefon
Fax
Bestellnr.
Kundennr.
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.