Buch, Englisch, Band 239, 321 Seiten, Book w. online files / update, Format (B × H): 160 mm x 241 mm, Gewicht: 670 g
Reihe: Progress in Mathematics
Buch, Englisch, Band 239, 321 Seiten, Book w. online files / update, Format (B × H): 160 mm x 241 mm, Gewicht: 670 g
Reihe: Progress in Mathematics
ISBN: 978-0-8176-4397-3
Verlag: Birkhäuser Boston
Invited articles by leading researchers explore various aspects of the parallel worlds of function fields and number fields
Topics range from Arakelov geometry, the search for a theory of varieties over the field with one element, via Eisenstein series to Drinfeld modules, and -motives
Aimed at graduate students, mathematicians, and researchers interested in geometry and arithmetic and their connections
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Arithmetic over Function Fields: A Cohomological Approach.- Algebraic Stacks Whose Number of Points over Finite Fields is a Polynomial.- On a Problem of Miyaoka.- Monodromy Groups Associated to Non-Isotrivial Drinfeld Modules in Generic Characteristic.- Irreducible Values of Polynomials: A Non-Analogy.- Schemes over.- Line Bundles and p-Adic Characters.- Arithmetic Eisenstein Classes on the Siegel Space: Some Computations.- Uniformizing the Stacks of Abelian Sheaves.- Faltings’ Delta-Invariant of a Hyperelliptic Riemann Surface.- A Hirzebruch Proportionality Principle in Arakelov Geometry.- On the Height Conjecture for Algebraic Points on Curves Defined over Number Fields.- A Note on Absolute Derivations and Zeta Functions.- On the Order of Certain Characteristic Classes of the Hodge Bundle of Semi-Abelian Schemes.- A Note on the Manin-Mumford Conjecture.




