Vasyunin / Volberg | The Bellman Function Technique in Harmonic Analysis | Buch | 978-1-108-48689-7 | sack.de

Buch, Englisch, Band 186, 460 Seiten, Format (B × H): 188 mm x 224 mm, Gewicht: 771 g

Reihe: Cambridge Studies in Advanced Mathematics

Vasyunin / Volberg

The Bellman Function Technique in Harmonic Analysis


Erscheinungsjahr 2020
ISBN: 978-1-108-48689-7
Verlag: Cambridge University Press

Buch, Englisch, Band 186, 460 Seiten, Format (B × H): 188 mm x 224 mm, Gewicht: 771 g

Reihe: Cambridge Studies in Advanced Mathematics

ISBN: 978-1-108-48689-7
Verlag: Cambridge University Press


The Bellman function, a powerful tool originating in control theory, can be used successfully in a large class of difficult harmonic analysis problems and has produced some notable results over the last thirty years. This book by two leading experts is the first devoted to the Bellman function method and its applications to various topics in probability and harmonic analysis. Beginning with basic concepts, the theory is introduced step-by-step starting with many examples of gradually increasing sophistication, culminating with Calderón–Zygmund operators and end-point estimates. All necessary techniques are explained in generality, making this book accessible to readers without specialized training in non-linear PDEs or stochastic optimal control. Graduate students and researchers in harmonic analysis, PDEs, functional analysis, and probability will find this to be an incisive reference, and can use it as the basis of a graduate course.

Vasyunin / Volberg The Bellman Function Technique in Harmonic Analysis jetzt bestellen!

Weitere Infos & Material


Introduction; 1. Examples of Bellman functions; 2. What you always wanted to know about Stochastic Optimal Control, but were afraid to ask; 3. Conformal martingales models. Stochastic and classical Ahlfors-Beurling operators; 4. Dyadic models. Application of Bellman technique to upper estimates of singular integrals; 5. Application of Bellman technique to the end-point estimates of singular integrals.


Volberg, Alexander
Alexander L. Volberg is a Distinguished Professor of Mathematics at Michigan State University. He was the recipient of the Onsager Medal as well as the Salem Prize, awarded to a young researcher in the field of analysis. Along with teaching at institutions in Paris and Edinburgh, Volberg also served as a Humboldt senior researcher, Clay senior researcher, and a Simons fellow. He has co-authored 179 papers, and is the author of Calderon-Zygmund Capacities and Operators on Non-Homogenous Spaces (2004).

Vasyunin, Vasily
Vasily Vasyunin is a Leading Researcher at the St Petersburg Department of the Steklov Mathematical Institute of Russian Academy of Sciences and Professor of Saint-Petersburg State University. His research interests include linear and complex analysis, operator models, and harmonic analysis. Vasyunin has taught at universities in Europe, and the United States. He has authored or co-authored over sixty articles.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.