Buch, Englisch, 208 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 506 g
ISBN: 978-981-13-2311-9
Verlag: Springer Nature Singapore
The book presents theory and algorithms for secure networked inference in the presence of Byzantines. It derives fundamental limits of networked inference in the presence of Byzantine data and designs robust strategies to ensure reliable performance for several practical network architectures. In particular, it addresses inference (or learning) processes such as detection, estimation or classification, and parallel, hierarchical, and fully decentralized (peer-to-peer) system architectures. Furthermore, it discusses a number of new directions and heuristics to tackle the problem of design complexity in these practical network architectures for inference.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Technische Informatik Computersicherheit
- Mathematik | Informatik Mathematik Stochastik
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik Signalverarbeitung
- Mathematik | Informatik EDV | Informatik Informatik Mathematik für Informatiker
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Informationstheorie, Kodierungstheorie
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Informationstheorie, Kodierungstheorie
- Mathematik | Informatik EDV | Informatik Computerkommunikation & -vernetzung
Weitere Infos & Material
Chapter 1 Introduction.- Chapter 2 Conventional Inference theories.- Chapter 3 Distributed Detection in Networks.- Chapter 4 Distributed Estimation and Target Localization.- Chapter 5 Distributed Classification and Target Tracking.- Chapter 6 New Research Directions Discussion and conclusions.