Walschap | Metric Structures in Differential Geometry | Buch | 978-0-387-20430-7 | sack.de

Buch, Englisch, Band 224, 229 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1150 g

Reihe: Graduate Texts in Mathematics

Walschap

Metric Structures in Differential Geometry


2004
ISBN: 978-0-387-20430-7
Verlag: Springer

Buch, Englisch, Band 224, 229 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1150 g

Reihe: Graduate Texts in Mathematics

ISBN: 978-0-387-20430-7
Verlag: Springer


This text is an introduction to the theory of differentiable manifolds and fiber bundles. The only prerequisites are a solid background in calculus and linear algebra, together with some basic point-set topology.

Walschap Metric Structures in Differential Geometry jetzt bestellen!

Zielgruppe


Graduate


Autoren/Hrsg.


Weitere Infos & Material


1. Differentiable Manifolds.- 1. Basic Definitions.- 2. Differentiable Maps.- 3. Tangent Vectors.- 4. The Derivative.- 5. The Inverse and Implicit Function Theorems.- 6. Submanifolds.- 7. Vector Fields.- 8. The Lie Bracket.- 9. Distributions and Frobenius Theorem.- 10. Multilinear Algebra and Tensors.- 11. Tensor Fields and Differential Forms.- 12. Integration on Chains.- 13. The Local Version of Stokes’ Theorem.- 14. Orientation and the Global Version of Stokes’ Theorem.- 15. Some Applications of Stokes’ Theorem.- 2. Fiber Bundles.- 1. Basic Definitions and Examples.- 2. Principal and Associated Bundles.- 3. The Tangent Bundle of Sn.- 4. Cross-Sections of Bundles.- 5. Pullback and Normal Bundles.- 6. Fibrations and the Homotopy Lifting/Covering Properties.- 7. Grassmannians and Universal Bundles.- 3. Homotopy Groups and Bundles Over Spheres.- 1. Differentiable Approximations.- 2. Homotopy Groups.- 3. The Homotopy Sequence of a Fibration.- 4. Bundles Over Spheres.- 5. The Vector Bundles Over Low-Dimensional Spheres.- 1. Connections on Vector Bundles.- 4. Connections and Curvature.- 2. Covariant Derivatives.- 3. The Curvature Tensor of a Connection.- 4. Connections on Manifolds.- 5. Connections on Principal Bundles.- 5. Metric Structures.- 1. Euclidean Bundles and Riemannian Manifolds.- 2. Riemannian Connections.- 3. Curvature Quantifiers.- 4. Isometric Immersions.- 5. Riemannian Submersions.- 6. The Gauss Lemma.- 7. Length-Minimizing Properties of Geodesics.- 8. First and Second Variation of Arc-Length.- 9. Curvature and Topology.- 10. Actions of Compact Lie Groups.- 6. Characteristic Classes.- 1. The Weil Homomorphism.- 2. Pontrjagin Classes.- 3. The Euler Class.- 4. The Whitney Sum Formula for Pontrjagin and Euler Classes.- 5. Some Examples.- 6. The Unit SphereBundle and the Euler Class.- 7. The Generalized Gauss-Bonnet Theorem.- 8. Complex and Symplectic Vector Spaces.- 9. Chern Classes.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.