Wang / Han | Toward Quantum FinFET | Buch | 978-3-319-02020-4 | sack.de

Buch, Englisch, Band 17, 363 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 728 g

Reihe: Lecture Notes in Nanoscale Science and Technology

Wang / Han

Toward Quantum FinFET


2013
ISBN: 978-3-319-02020-4
Verlag: Springer International Publishing

Buch, Englisch, Band 17, 363 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 728 g

Reihe: Lecture Notes in Nanoscale Science and Technology

ISBN: 978-3-319-02020-4
Verlag: Springer International Publishing


This book reviews a range of quantum phenomena in novel nanoscale transistors called FinFETs, including quantized conductance of 1D transport, single electron effect, tunneling transport, etc. The goal is to create a fundamental bridge between quantum FinFET and nanotechnology to stimulate readers' interest in developing new types of semiconductor technology. Although the rapid development of micro-nano fabrication is driving the MOSFET downscaling trend that is evolving from planar channel to nonplanar FinFET, silicon-based CMOS technology is expected to face fundamental limits in the near future. Therefore, new types of nanoscale devices are being investigated aggressively to take advantage of the quantum effect in carrier transport. The quantum confinement effect of FinFET at room temperatures was reported following the breakthrough to sub-10nm scale technology in silicon nanowires. With chapters written by leading scientists throughout the world, Toward Quantum FinFET provides a comprehensive introduction to the field as well as a platform for knowledge sharing and dissemination of the latest advances. As a roadmap to guide further research in an area of increasing importance for the future development of materials science, nanofabrication technology, and nano-electronic devices, the book can be recommended for Physics, Electrical Engineering, and Materials Science departments, and as a reference on micro-nano electronic science and device design.

  • Offers comprehensive coverage of novel nanoscale transistors with quantum confinement effect
  • Provides the keys to understanding the emerging area of the quantum FinFET
  • Written by leading experts in each research area
  • Describes a key enabling technology for research and development of nanofabrication and nanoelectronic devices
Wang / Han Toward Quantum FinFET jetzt bestellen!

Zielgruppe


Physics, Electrical Engineering, and Materials Science departments

Weitere Infos & Material


PrefaceChapter 1: Simulation of Quantum Ballistic Transport in FinFETs
Chapter 2: Model for quantum confinement in nanowires and the application of this model to the study of carrier mobility in nanowire FinFETs
Chapter 3: Understanding the FinFET Mobility by Systematic Experiments
Chapter 4: Quantum Mechanical Potential Modeling of FinFET
Chapter 5: Physical insight and correlation analysis of finshape fluctuations and work-function variability in FinFET devices
Chapter 6: Characteristic and Fluctuation of Multi-Fin FinFETs
Chapter 7: Variability in Nanoscale FinFET Technologies
Chapter 8: Random Telegraph Noise in Multi-Gate FinFET/Nanowire Devices and the Impact of Quantum Confinement
Chapter 9: Investigations on Transport Properties of Poly-Silicon Nanowire Transistors Featuring Independent Double-Gated Configuration under Cryogenic Ambient
Chapter 10: Towards Drain extended FinFETs for SoC applications
Chapter 11: Modeling FinFETs for CMOS Applications
Chapter 12: Enhanced Quantum Effects in Room-Temperature Coulomb Blockade Devices Based on Ultrascaled finFET Structure
Chapter 13: Single-Electron Tunneling Transistors Utilizing Individual Dopant Potentials
Chapter 14: Single Electron Transistor and Quantum Dots on Graphene
Chapter 15: Terahertz Response in Schottky Warp-Gate Controlled Single Electron TransistorsIndex



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.