Wang / Hill | Deterministic Learning Theory for Identification, Recognition, and Control | Buch | 978-1-138-11205-6 | sack.de

Buch, Englisch, 207 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 454 g

Reihe: Automation and Control Engineering

Wang / Hill

Deterministic Learning Theory for Identification, Recognition, and Control


1. Auflage 2017
ISBN: 978-1-138-11205-6
Verlag: Taylor & Francis Ltd

Buch, Englisch, 207 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 454 g

Reihe: Automation and Control Engineering

ISBN: 978-1-138-11205-6
Verlag: Taylor & Francis Ltd


Deterministic Learning Theory for Identification, Recognition, and Control presents a unified conceptual framework for knowledge acquisition, representation, and knowledge utilization in uncertain dynamic environments. It provides systematic design approaches for identification, recognition, and control of linear uncertain systems. Unlike many books currently available that focus on statistical principles, this book stresses learning through closed-loop neural control, effective representation and recognition of temporal patterns in a deterministic way.

A Deterministic View of Learning in Dynamic Environments

The authors begin with an introduction to the concepts of deterministic learning theory, followed by a discussion of the persistent excitation property of RBF networks. They describe the elements of deterministic learning, and address dynamical pattern recognition and pattern-based control processes. The results are applicable to areas such as detection and isolation of oscillation faults, ECG/EEG pattern recognition, robot learning and control, and security analysis and control of power systems.

A New Model of Information Processing

This book elucidates a learning theory which is developed using concepts and tools from the discipline of systems and control. Fundamental knowledge about system dynamics is obtained from dynamical processes, and is then utilized to achieve rapid recognition of dynamical patterns and pattern-based closed-loop control via the so-called internal and dynamical matching of system dynamics. This actually represents a new model of information processing, i.e. a model of dynamical parallel distributed processing (DPDP).

Wang / Hill Deterministic Learning Theory for Identification, Recognition, and Control jetzt bestellen!

Zielgruppe


Professional


Autoren/Hrsg.


Weitere Infos & Material


Introduction. RBF Networks and the PE Condition. Locally Accurate Identification of Nonlinear Systems. Learning from Closed-Loop Neural Control. Rapid Recognition of Dynamical Patterns. Deterministic Learning using Output Measurements. Applications of Deterministic Learning. Conclusions.


Cong Wang, David J. Hill



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.