Yin | Future Industrial Internet | Buch | 978-981-966735-2 | sack.de

Buch, Englisch, 242 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 388 g

Reihe: Communications in Computer and Information Science

Yin

Future Industrial Internet

Second Future Industrial Internet Symposium, FII 2024, Shenzhen, China, August 23, 2024, Proceedings
Erscheinungsjahr 2025
ISBN: 978-981-966735-2
Verlag: Springer Nature Singapore

Second Future Industrial Internet Symposium, FII 2024, Shenzhen, China, August 23, 2024, Proceedings

Buch, Englisch, 242 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 388 g

Reihe: Communications in Computer and Information Science

ISBN: 978-981-966735-2
Verlag: Springer Nature Singapore


This book constitutes the proceedings of the Second Future Industrial Internet Symposium, FII 2024, held in Shenzhen, China, on August 23, 2024.

The 12 full papers and 4 short papers presented in this book were carefully reviewed and selected from 75 submissions.They focus on verious aspects of the latest research, applications and development trends related to the industrial internet and associated fields.

Yin Future Industrial Internet jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


.-  A High-Performance Data Collaborative Analysis Chain with Privacy Protection.

.- A Review of Steelmaking and Continuous Casting Scheduling Based on Intelligent Optimization Methods.

.- An Empirical Analysis of RIS Phase Quantization Effect in an IIoT Scenario.

.- Application of Embedded Soft-PLC in Residential Photovoltaic System.

.- Data/Model Jointly Driven Routing and Resource Allocation Algorithms for Large-scale Self-organizing Networks for New Power Systems.

.- Image semantic transmission method for downstream tasks of industrial

Internet.

.- Improvement of Visual Sensing System via Dual Attention YOLOv5 in Calcium Carbide Factory.

.- Industrial process monitoring based on multi-block graph convolutional network.

.- Modeling and Collaborative Control for Networked Heterogeneous Re-Entrant Manufacturing Systems.

.- Recursive Residual Convolutional Neural Network with Attention Mechanism Based on U-Net (Attention R2U-Net) for Surface Minor Defect Detection.

.- Relay Selection for Multi-Source Cooperation in Wireless Powered Industrial Sensor Networks.

.- Resource-Efficient Consensus for Large-Scale Industrial Multi-Agent Systems: An Event-Triggered Approach.

.- Rolling Bearings Intelligent Fault Diagnosis Method Based on TTS-GAN Model Transfer Learning.

.- SKAS: Symmetric-key AKA Scheme for Industrial Internet Cloud Applications in Untrusted Edge Environments Based on ECDH.

.- TD3-based Stochastic Workload Offloading for 5G-based Cloud Control System.

.- YOLO_LSK: A Sintered Surface Defect Detection Model Based on Large Selective Kernel Network.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.