Zhang | Fundamentals of Image Data Mining | Buch | 978-3-030-17988-5 | sack.de

Buch, Englisch, 314 Seiten, Book, Format (B × H): 155 mm x 235 mm, Gewicht: 679 g

Reihe: Texts in Computer Science

Zhang

Fundamentals of Image Data Mining

Analysis, Features, Classification and Retrieval
1. Auflage 2019
ISBN: 978-3-030-17988-5
Verlag: Springer-Verlag GmbH

Analysis, Features, Classification and Retrieval

Buch, Englisch, 314 Seiten, Book, Format (B × H): 155 mm x 235 mm, Gewicht: 679 g

Reihe: Texts in Computer Science

ISBN: 978-3-030-17988-5
Verlag: Springer-Verlag GmbH


This reader-friendly textbook presents a comprehensive review of the essentials of image data mining, and the latest cutting-edge techniques used in the field. The coverage spans all aspects of image analysis and understanding, offering deep insights into areas of feature extraction, machine learning, and image retrieval. The theoretical coverage is supported by practical mathematical models and algorithms, utilizing data from real-world examples and experiments.Topics and features: describes the essential tools for image mining, covering Fourier transforms, Gabor filters, and contemporary wavelet transforms; reviews a varied range of state-of-the-art models, algorithms, and procedures for image mining; emphasizes how to deal with real image data for practical image mining; highlights how such features as color, texture, and shape can be mined or extracted from images for image representation; presents four powerful approaches for classifying image data, namely, Bayesian classification, Support Vector Machines, Neural Networks, and Decision Trees; discusses techniques for indexing, image ranking, and image presentation, along with image database visualization methods; provides self-test exercises with instructions or Matlab code, as well as review summaries at the end of each chapter.This easy-to-follow work illuminates how concepts from fundamental and advanced mathematics can be applied to solve a broad range of image data mining problems encountered by students and researchers of computer science. Students of mathematics and other scientific disciplines will also benefit from the applications and solutions described in the text, together with the hands-on exercises that enable the reader to gain first-hand experience of computing.
Zhang Fundamentals of Image Data Mining jetzt bestellen!

Zielgruppe


Upper undergraduate


Autoren/Hrsg.


Weitere Infos & Material


Part I: PreliminariesFourier TransformWindowed Fourier TransformWavelet TransformPart II: Image Representation and Feature ExtractionColor Feature ExtractionTexture Feature ExtractionShape RepresentationPart III: Image Classification and AnnotationBayesian ClassificationSupport Vector MachinesArtificial Neural NetworksImage Annotation with Decision TreesPart IV: Image Retrieval and PresentationImage IndexingImage RankingImage PresentationAppendix: Deriving the Conditional Probability of a Gaussian Process


Dr. Dengsheng Zhang is a Senior Lecturer in the School of Science, Engineering and Information Technology at Federation University Australia.---Textbook & Academic Authors Association 2020 Most Promising New Textbook Award Winner!The judges said:"Fundamentals of Image Data Mining provides excellent coverage of current algorithms and techniques in image analysis. It does this using a progression of essential and novel image processing tools that give students an in-depth understanding of how the tools fit together and how to apply them to problems."



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.