Zhang / Hladik / Moosaei | Learning and Intelligent Optimization | Buch | 978-3-032-09155-0 | www.sack.de

Buch, Englisch, 332 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 522 g

Reihe: Lecture Notes in Computer Science

Zhang / Hladik / Moosaei

Learning and Intelligent Optimization

19th International Conference, LION 19, Prague, Czech Republic, June 15-19, 2025, Proceedings, Part I
Erscheinungsjahr 2026
ISBN: 978-3-032-09155-0
Verlag: Springer

19th International Conference, LION 19, Prague, Czech Republic, June 15-19, 2025, Proceedings, Part I

Buch, Englisch, 332 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 522 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-032-09155-0
Verlag: Springer


The two-volume set LNCS 15744 + 15745 constitutes the proceedings of the 19th International Conference on Learning and Intelligent Optimization, LION 2025, which was held in Prague, Czech Republic, during June 15–19, 2025.

The 40 full papers included in the proceedings were carefully reviewed and selected from 70 submissions. They focus on exploring the intersections of Artificial Intelligence, Machine Learning, and Operations Research.

Zhang / Hladik / Moosaei Learning and Intelligent Optimization jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


.- Multi-Agent Soft Actor-Critic with Coordinated Loss for Autonomous Mobility-on-Demand Fleet Control.

.- Do LLMs Understand Constraint Programming? Zero-Shot Constraint Programming Model Generation Using LLMs.

.- Learning to Solve the Min-Max Mixed-Shelves Picker-Routing Problem via Hierarchical and Parallel Decoding.

.- Automated Refutation with Monte Carlo Search of Graph Theory Conjectures on the Maximum Laplacian Eigenvalue.

.- Demand Selection for VRP with Emission Quota.

.- Multi-target tree regression approach for surrogate-based optimisation.

.- Information Preserving Line Search via Bayesian Optimization.

.- Bayesian Optimisation Against Climate Change: Applications and Benchmarks.

.- Empirical Analysis of Upper Bounds of Robustness Distributions using Adversarial Attacks.

.- e$^2$HPO: energy efficient Hyperparameter Optimization via energy-aware multiple information source Bayesian optimization.

.- Reinforcement Learning for Dynamic Pricing with resource constraints in a competitive context.

.- Decision Maker Preferences in Surrogate-based Multi-Objective Optimization: A Survey.

.- Deep Reinforcement Learning Based Genetic Framework for Flexible Job-Shop Scheduling under Practical Constraints.

.- Solving influence diagrams: efficient mixed-integer programming formulation and heuristic.

.- Mixed-Integer Linear Optimization via Learning-Based Two-Layer Large Neighborhood Search.

.- Geometrically Invariant and Equivariant Graph Neural Networks for  TSP Algorithm Selection and Hardness Prediction.

.- Time-Varying Multi-Objective Optimization: Tradeoff Regret Bounds.

.- Vector Bin Packing with Bin Clusters, Variable Bin Sizes and Costs - A Model and Heuristics for Cloud Capacity Planning.

.- SchedulExpert: Graph Attention Meets Mixture-of-Experts for JSSP.

.- Reinforcement Learning for AMR Charging Decisions: The Impact of Reward and Action Space Design.

.- The Post-Enrollment Course Timetabling Problem with Flexible Teacher Assignments.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.