Zhu / Yu / Nadamoto | Database Systems for Advanced Applications | Buch | 978-981-953826-3 | www.sack.de

Buch, Englisch, 488 Seiten, Format (B × H): 155 mm x 235 mm

Reihe: Lecture Notes in Computer Science

Zhu / Yu / Nadamoto

Database Systems for Advanced Applications

30th International Conference, Dasfaa 2025, Singapore, Singapore, May 26-29, 2025, Proceedings, Part I
Erscheinungsjahr 2026
ISBN: 978-981-953826-3
Verlag: Springer Nature Singapore

30th International Conference, Dasfaa 2025, Singapore, Singapore, May 26-29, 2025, Proceedings, Part I

Buch, Englisch, 488 Seiten, Format (B × H): 155 mm x 235 mm

Reihe: Lecture Notes in Computer Science

ISBN: 978-981-953826-3
Verlag: Springer Nature Singapore


This six-volume set LNCS 15986-15991 constitutes the proceedings of the 30th International Conference on Database Systems for Advanced Applications, DASFAA 2025, held in Singapore, during May 26–29, 2025.
The 136 full papers presented in this book together with 89 short papers were carefully reviewed and selected from 731 submissions.They cover topics such as

Part I- Machine Learning and Text.
Part II- Emerging Application; NLP and Spatial-Temporal.
Part V- Recommendation and Security & Privacy.
Part VI- Language Model; Industry Papers and Demo Papers.

Zhu / Yu / Nadamoto Database Systems for Advanced Applications jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


.- Machine Learning.
.- Less is More: Efficient Weight “Farcasting” with 1-Layer Neural Network.
.- FlexPie: Accelerate Distributed Inference on Edge Devices with Flexible Combinatorial Optimization.
.- UFMKSC: A Uniform Framework for Multiple Kernel Spectral Clustering Using a Noise-Free Laplacian Matrix.
.- LODC: A Lightweight Online Update Method for Density-Based Clustering.
.- JurisNexus: Enhancing Legal Judgment Prediction via Cross-Reasoning-Chain Representation Learning Mechanism.
.- Bridging the Gap between Sparse Matrix Reordering and Factorization: A Deep Learning Framework for Fill-in Reduction.
.- HESM: A Hyperedge Embedding-Based Subhypergraph Matching Method.
.- DySA-TGN: Dynamic Self-Adaptive Temporal Graph Neural Network for Multivariate Time Series Classification.
.- STPformer: Mutation-Aware Spatial-Temporal Pivotal Attention Networks for Transformer-based Traffic Forecasting.
.- Making Local Models Learn Autonomously With Global Feature Tracking and Client Drift Releasing for Federated Learning.
.- Gaussian Regularization in Neural Graph Learning.
.- Subset Discovery for Entity Matching.
.- Facial Features Enhanced Multi-Branch Graph Network for Driver Drowsiness Detection.
.- CF-TS: A General Coarse-to-Fine Method for Trajectory Simplification.
.- ExBoost: Out-of-Box Co-Optimization of Machine Learning and Join Queries.
.- MAPN: Enhancing Heterogeneous Sparse Graph Representation by Mamba-based Asynchronous Aggregation.
.- Knowledge Hierarchy Guided Biological-Medical Dataset Distillation for Domain LLM Training.
.- Anticipating Retractions in Scientific Databases using LLM-Based Citation Analysis.
.- Personalized Federated Multi-Center Medical Data Analysis with Local and Global Uncertainty.
.- Data-Driven Regional Weather Forecasting Guided by Global Context.
.- Instance-Aware Test-Time Adaptation for Domain Generalization.
.- FLeW: Facet-Level and Adaptive Weighted Representation Learning of Scientific Documents.
.- Mitigating Linguistic Bias between Malay and Indonesian Languages using Masked Language Models.
.- ROME: Memorization Insights from Text, Logits and Representation.
.- FairDP-GNN: Graph Neural Network with Group Fairness and Differential Privacy.
.- Accelerating DeepWalk via Context-Level Parameter Update and Huffman Tree Pruning.
.- MASS: Mitigating Aspect-oriented Semantic Sparsity for Fine-grained Sentiment Analysis.
.- Predicting Enterprise Users’ Consuming Potential for Cloud Services.
.- rFedKD: A Reverse Federated Knowledge Distillation Method for Communication Efficiency.
.- Private Multi-Party Neural Network Training over Z2k via Galois Rings.
.- Text
.- Enhancing Chinese Multimodal Entity Linking with CLIP-RoBERTa and Contrastive Learning.
.- Sentence Extraction Framework with High Relevance and Divergence for Document Summarization.
.- Enhancing Chain-of-Thought Reasoning for Text-to-SQL with Effective Retrieval-Augmented Generation.
.- Unlocking Multimodal Potential for Few-Shot Semantic Segmentation with Vision-Enriched Text.
.- AMR-GCC:Two-step Cross-Document Event Factuality Identification on Data Augmentation.
.- NanoCSV: Enabling Efficient Parallel CSV Extraction with Hierarchical Finite-State Transducer.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.