E-Book, Englisch, 326 Seiten, eBook
Agarwal / Nayak / Mittal Deep Learning-Based Approaches for Sentiment Analysis
1. Auflage 2020
ISBN: 978-981-15-1216-2
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 326 Seiten, eBook
Reihe: Algorithms for Intelligent Systems
ISBN: 978-981-15-1216-2
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Chapter 1. Application of Deep Learning Approaches for Sentiment Analysis: A Survey.- Chapter 2. Recent Trends and Advances in Deep Learning based Sentiment Analysis.- Chapter 3. - Deep Learning Adaptation with Word Embeddings for Sentiment Analysis on Online Course Reviews.- Chapter 4. Toxic Comment Detection in Online Discussions.- Chapter 5. Aspect Based Sentiment Analysis of Financial Headlines and Microblogs.- Chapter 6. Deep Learning based frameworks for Aspect Based Sentiment Analysis.- Chapter 7. Transfer Learning for Detecting Hateful Sentiments in Code Switched Language.- Chapter 8. Multilingual Sentiment Analysis.- Chapter 9. Sarcasm Detection using deep learning.- Chapter 10. Deep Learning Approaches for Speech Emotion Recognition.- Chapter 11. Bidirectional Long Short Term Memory Based Spatio-Temporal In Community Question Answering.- Chapter 12. Comparing Deep Neural Networks to Traditional Models for Sentiment Analysis in Turkish Language.