Akaogi | High-Pressure Silicates and Oxides | Buch | 978-981-19-6365-0 | www.sack.de

Buch, Englisch, 206 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 381 g

Reihe: Advances in Geological Science

Akaogi

High-Pressure Silicates and Oxides

Phase Transition and Thermodynamics
1. Auflage 2022
ISBN: 978-981-19-6365-0
Verlag: Springer

Phase Transition and Thermodynamics

Buch, Englisch, 206 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 381 g

Reihe: Advances in Geological Science

ISBN: 978-981-19-6365-0
Verlag: Springer


This book presents a summary of high-pressure phase transitions of minerals and related inorganic compounds. The first part reviews the methods to investigate phase transitions by direct high-pressure and high-temperature experiments together with thermodynamic approaches that consist of calorimetric measurements and thermodynamic calculation. In the second part, phase relations and thermodynamic properties of olivine, pyroxene, garnet, spinel, perovskite, rutile, and related inorganic compounds with ABO, ABO, ABO, and AO stoichiometries are described. Particular emphasis is placed on spinel- and perovskite-structured phases and their high-pressure polymorphs called post-spinel and post-perovskite phases. The last part of the book focuses on phase relations of mantle rocks and on natural high-pressure minerals from the Earth’s deep mantle and in shocked meteorites.  

Akaogi High-Pressure Silicates and Oxides jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1. Introduction

1-1. Structure of the Earth’s interior

1-2. Constituent minerals of the Earth’s mantle

1-3. High-pressure and high-temperature experiments and thermodynamic calculations for investigation of mineral phase transitions

1-4. High-pressure and high-temperature experiments for synthesis of new materials

1-5. Mineral names of high-pressure silicates and oxides

References

2. Crystal chemistry and thermodynamics of high-pressure phase transition

2-1. Crystal chemistry of high-pressure phase transition

2-1-1. General features

2-1-2. High-pressure phase transitions of AO compounds

2-1-3. Pressure-induced electronic spin transition

2-2. Thermodynamics of high-pressure phase transition

2-2-1. Gibbs free energy and phase transition

2-2-2. Configurational and vibrational entropies

2-2-3. Thermodynamic formulation of high-pressure phase transition

2-2-4. Thermodynamic formulation of high-pressure phase equilibria in a binary system

References

3. High-pressure and high-temperature experiments with large-volume apparatus

3-1. Large-volume high-pressure apparatus

3-1-1. Piston-cylinder apparatus

3-1-2. Multianvil apparatus

3-2. Materials of anvils and pressure media

3-3. Pressure calibration

3-4. Cell assembly for high-pressure and high-temperature experiments

3-5. High-pressure and high-temperature quenching experiments

3-6. High-pressure and high-temperature in situ X-ray diffraction experiments

References

4. Calorimetric experiments and thermodynamic calculation of high-pressure phase relations

4-1. Enthalpy measurement

4-2. Low-temperature heat capacity measurement and determination of entropy

4-3. High-temperature heat capacity measurement

4-4. Lattice vibrational model for heat capacity calculation

4-5. Examples of thermodynamic calculations of phase equilibrium boundaries: quartz-coesite-stishovite transitions in SiO

4-6. Thermodynamic database for calculation of high-pressure phase equilibria

4-7. Ab initio calculation of thermodynamic properties of high-pressure phases

References

5. Olivine - modified spinel - spinel transitions

5-1. Introduction

5-2. Olivine - modified spinel - spinel transitions in MgSiO

5-3. Olivine - spinel transition in FeSiO

5-4. Olivine - modified spinel - spinel transitions in the MgSiO-FeSiO system

5-5. Hydrous wadsleyite and hydrous ringwoodite

5-6. Spinelloids with spinel-related structures

References

6. Phase transitions of pyroxene and garnet, and post-spinel transition forming perovskite

6-1. Phase transitions in MgSiO and FeSiO

6-2. Post-spinel transition in MgSiO

6-3. Post-spinel transition in the MgSiO-FeSiO system

6-4. Phase transitions in the MgSiO-AlO system

6-5. Phase transitions in CaSiO, CaMgSiO and other pyroxene and garnets

References

7. Crystal chemistry, phase relations, and energetics of high-pressure ABO perovskites

7-1. Perovskite structure and Goldschmidt tolerance factor

7-2. Phase relations of high-pressure ABO perovskites

7-3. Enthalpy of formation of ABO perovskite

7-4. Perovskite - to - LiNbO-type phase transition of ABO compounds

7-5. Hexagonal perovskite and related structures

References

8. Post-perovskite transition in ABX and phase transitions in AO

8-1. Post-perovskite transition in MgSiO

8-2. Post-perovskite transition in the MgSiO-FeSiO and MgSiO-AlO systems

8-3. Post-perovskite transition of ABX compounds

8-3-1. Phase transitions of ABO and ABFperovskites

8-3-2. Predominant factors controlling the perovskite - post-perovskite transition

8-3-3. Phase transitions of ATiO titanates

8-4. Phase transitions of AO compounds.

8-4-1. Phase transition sequences

8-4-2. Phase relations in SiO and TiO

References

9. Post-spinel transition in ABO

9-1. Post-spinel structures and phase transitions of MgAlO and related compounds

9-2. Phase transitions in MgCrO, FeCrO and MgFeO

9-3. Stability of calcium ferrite-type and calcium titanate-type ABO compounds in terms of cation radius

9-4. Hexagonal aluminous (NAL) phase

9-5. Hollandite-type phase

References

10. Phase transitions in mantle rocks     

10-1. Phase transitions in pyrolite

10-2. Phase transitions in MORB, harzburgite and continental crust materials

10-3. Phase transitions in the lowermost mantle

References

11. High-pressure minerals from the Earth’s mantle and in shocked meteorites

11-1. High-pressure minerals derived from the Earth’s mantle

11-2. High-pressure minerals in shocked meteorites and shocked terrestrial rocks

References




After receiving a B.Sc. in petrology and mineralogy from Tohoku University, Masaki Akaogi earned a Ph.D. in geophysics from the University of Tokyo. Subsequently, he worked as an assistant professor and as an associate professor in the Department of Earth Sciences, Kanazawa University. He was a postdoctoral fellow in the Department of Chemistry, Arizona State University in the early 1980s, and was a visiting scientist in the Department of Geosciences, Princeton University. From 1990 to 2021, he was a full professor in the Department of Chemistry, Gakushuin University, where he is currently an emeritus professor. He served as an editor of Physics and Chemistry of Minerals (Springer) from 1997 to 2005. His research interests include high-pressure phase equilibria and thermodynamic properties of silicates and related compounds with applications for clarifying mineralogy, structure, and dynamics of the Earth’s interior and for synthesis of new inorganic materials. Dr. Akaogi is a fellow of the Mineralogical Society of America and of the Japan Geoscience Union. He has received awards from the Mineralogical Society of Japan and the Japan Society of High Pressure Science and Technology.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.